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High crystallinity silicic ignimbrites (such as the Monotonous Intermediates) typically erupt magma with an
average crystallinity ranging from 40 to 50%. This average crystallinity is believed to be just under the
threshold at which magma behaves as a solid (50–60% crystals), i.e. the locking point crystallinity, where
convection is suppressed and large eruptions are unlikely. These magmas often display textural features
which suggest that their average crystallinity was once higher and decreased before the eruption as a result
of reheating through the injection of new magma. In this study, we use a theoretical 1D heat conduction
model with phase change to test the ability of different melting scenarios of crystal mushes to meet the 40 to
50% crystallinity constraint observed in the field. Our heat conduction and melting models allow us to derive
analytical solutions for the average crystallinity in the magma body (initially a crystal mush). We focus on
the propagation of the melting front coinciding with the locking point crystallinity for different crystallinity–
temperature relationships and various choices of temperature boundary conditions. We develop another
analytical model based on stagnant-lid convection scaling to assess the role of convection on the expected
average crystallinity of the magma subjected to wholesale steady-state convection. We find that, for all
realistic melting scenarios, the average crystallinity of a silicic magma body that passed through the
rheological transition is always substantially lower than what is observed in the field. We further show with
a simple energy balance that the thermal energy needed to unlock/remobilize these magma bodies requires
the intrusion of about an order of magnitude of more magma than the mush. Based on these results we argue
that, although melting is a key process in the thermal reactivation of high crystallinity magma bodies,
another coupled process is required in order to reactivate large volumes of crystal mushes. Moreover this
additional process has to (1) be more efficient energetically and (2) lead to a smaller overall crystallinity
reduction than melting alone.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Magmas spend most of their suprasolidus lifespan at high
crystallinity. Crystal-rich magmas (mushes) have a low thermal
contrast with the surrounding crust and latent heat buffering is
expected to significantly decrease the cooling rate asmagma approach
the solidus (Marsh, 1981; Koyaguchi and Kaneko, 1999, 2001; Huber
et al., 2009). Upon injection of new magma at the base of a
rheologically locked crystal mush, heat transfer and injection of
exsolved volatiles from the intrusion can partially melt the base of the
mush, decreasing its crystallinity below the locking point (Couch et al.,
2001; Bachmann and Bergantz, 2006). Partial melting leading to
wholesale convective stirring of large crystal mushes induced by the
heat transfer of repeated intrusions of more mafic magma has been
invoked as the process that can explain (1) the homogeneity of crystal-
rich ignimbrites at the hand sample scale and (2) the ubiquitous

chemical zoning and complex textures displayed by the mineral
phases (Hildreth, 1981; Lindsay et al., 2001; Bachmann and Dungan,
2002; Bachmann and Bergantz, 2004; Christiansen, 2005; Ruprecht et
al., 2008; Huber et al., 2009).

Magma chamber processes have to be reconstructed from few
available constraints obtained from petrological observations. The most
frequently used constraint to discern between different scenarios is the
time available for dynamic processes to occur. It is usually inferred from
field and stratigraphic observations, as well as from timescales obtained
usinggeochronologyandmineral–meltdisequilibrium(Turner andCosta,
2007; Costa, 2008). Yet another more restrictive constraint is readily
available but has rarely been the focus of any study: the average
crystallinity of the erupted products. What physical process (or
combination of physical processes) melts and mixes a locked-up crystal
mush with about 50–65% crystals to an homogeneous magma mixture
with a crystallinity 40–50%? It is generally assumed that, at the lowstrain-
rates expected in crystal-rich silicic magmas, magma behaves as a rigid
body at about 50% crystallinity (Marsh, 1981; Vigneresse et al., 1996;
Petford, 2003). The observation of homogenous magma bodies erupting
with a crystallinity of 40–50% (see Table 1) is therefore a difficult
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constraint to satisfy as it involves a limitedcrystallinity reduction (10–20%
volume in most cases) just below the locking point and, moreover, that
the crystallinity has to decrease everywhere below the locking point in
the activemagmabody. For very largemagmabodies like the FishCanyon
magma body, we show that this constraint is difficult to satisfy with
standard melting models.

In this study, we use the state of the magma prior to the eruption as
the major constraint to build a physical model to explain the
reactivation of mushes. In the first section, we present a simplified 1D
analytical model which does not include the heat transported by
buoyant volatiles. This model takes into account phase change with a
complex (i.e. non-linear) crystallinity–temperature relationship. The
model allows us to track the propagation of the locking front, defined
here as the fixed crystallinity set at the locking point threshold, during
melting. The model enable us to calculate the final average crystallinity
expected for the case where the heat transfer solely controls the
rheological state of themush.Weshow thatmeltingalonecannot satisfy
the final crystallinty constraint for most of the range of parameters
expected in real systems. The average crystallinity reduction expected
when the lock-up front reaches the roof of the magma chamber is
generally greater than observed in thefield. This can be explained by the
substantial amount of melting that occurs in the lower region of the
mush when the melting front reaches the top of the magma body. We

also calculate the average crystallinity in a fully reactivated mush
assuming a steady convection with different temperature–crystallinity
relationships. We observe that in all cases the final average crystallinity
is always much lower than what is observed in the field for crystal-rich
silicicmagmas. These results suggest thatmelting alone cannot be solely
responsible for the high (40–50%) and homogenous crystallinity of
Monotonous Intermediate magmas.

2. Melting model

The symbols used in the calculations are listed in Table 2. The
conceptual model for the melting problem is shown in Fig. 1. The
intrusion at the base heats up the lowermost part of the mush and
opens it to sluggish convection. We discretize the physical domain
into sections with boundaries set-up at fixed temperatures/crystal-
linities (therefore moving upwards at different pace as the mush
melts). This, as we show later, allows us to deal with non-linear
crystallinity–temperature relationships. In this study we use a power-
law parameterization

χ = 1−ϕ = 1− T−Ts
Tl−Ts

� �b

0 b b≤ 1; ð1Þ

Table 1
Average crystallinity measured in examples of Monotonous Intermediates. Measurement of crystallinity in pyroclastic units need to be performed on pumice samples, but the typical
small size of pumices and the presence of vesicles lead to some variability in the results. The units above are chosen as they provide possibly the most reliable estimates for
Monotonous Intermediates.

Unit name Location Average crystallinity References

Fish Canyon Tuff San Juan Volcanic Field, Colorado ∼45% Bachmann et al. (2002)
Snowshoe Mtn Tuff San Juan Volcanic Field, Colorado ∼40% Lipman (2004)
Blue Creek Tuff San Juan Volcanic Field, Colorado ∼40% Lipman (2004)
Masonic Park Tuff San Juan Volcanic Field, Colorado ∼40% Lipman (2004)
Lund Tuff Great Basin, Utah ∼45% Maughan et al. (2002)
Cerro Galan ignimbrite Central Andes ∼45% Folkes et al. (in press)
Atana ignimbrite Central Andes ≥35–40% Lindsay et al. (2001)

Table 2
List of parameters and symbols.

Symbol Description Value Units

b Exponent relating temperature to crystallinity for mush 0.4 to 1
cx=c Specific heat for phase x 1200 J/kg K
g Acceleration due to gravity m2

H Mush thickness 2000 m
Hl Thickness of Unlocked layer m
H Intrusion thickness m
k Thermal conductivity κρmc W/m K
L Latent heat of crystallization (intrusion/mush) 300 kJ /kg
Q Activation energy for dynamic viscosity 500 kJ
R Ideal gas constant 8.314 J/K mol
S Stefan number (latent/sensible heat) 1
Tb Intrusion–mush interface temperature °C
Tini Initial temperature of intrusion 895 °C
Tlock Locking point temperature (depends on b) °C
Tl Mush liquidus temperature 1000 °C
Ts Mush solidus temperature 700 °C
ΔTe Temperature difference driving convection in the intrusion °C
αT Thermal expansion coefficient 3×10−5 1/T
δi Boundary layer thicknesses m
χ=1−ϕ Crystallinity of intrusion / mush
χcr Critical crystallinity 0.5
ϕ Melt fraction
ϕini Initial melt fraction in the mush 0.45 or 0.35
ϕl Locking point melt fraction 0.5 or 0.4
κ Thermal diffusivity 10−6 m2/s
ρc Density of the melt in the mush 2800 kg/m3

ρm Density of the melt in the mush 2600 kg/m3

μ Dynamic viscosity Pa s
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where χ is the crystallinity (ϕ the melt fraction), b is the power-law
exponent, Ts, Tl are respectively the solidus and liquidus temperature
of the mush. Silicic magmas with eutectic behavior tend to have low b
values (about 0.4–0.5 for dacitic mush). As b decreases, the phase
diagram becomes more non-linear with steeper slope near the
solidus. The methodology we use here is inspired by Feltham and
Worster (2000). The general heat equations are

ρscsð1−ϕÞ + ρmcmϕð Þ ∂T∂t =
∂
∂z kmix

∂T
∂z

� �
−ρsL

∂ϕ
∂t ; HlðtÞ≤ z; ð2Þ

in the mush regions and

ρscsð1−ϕÞ + ρmcmϕð Þ ∂T∂t + u–z
∂T
∂z =

∂
∂z kmix

∂T
∂z

� �
−ρsL

∂ϕ
∂t ; 0 ≤ z ≤ H ðtÞ;

ð3Þ

in the convecting part. Hl(t) is the position of the interface between
the convecting part and the rigid mush (controlled by the position
where the melt fraction ϕ=ϕl≈0.5). The subscripts s and m refer
respectively to the solid and melt fractions, c is the specific heat, ρ the
density, ūz the average advective flux in the convecting region
(ūz=cρu), L the latent heat of fusion and km the thermal conductivity
of the solid–melt mixture. The generalized heat flux in the convecting
part is

Jh = u–zΔT−kmix
∂T
∂z : ð4Þ

Wewill simplify the treatment by neglecting the advection term in
order to find analytical solutions and assume the physical properties
of the melt and solid to be similar ρs=ρm=ρ, cs=cm=c and kmix=k.
Using θ=(T−Ts) /(Tl−Ts), and using the following time κ/V2 and
spatial scales κ/V, where κ=k /(ρc) and V is a characteristic velocity
scale, Eqs. (2) and (3) become

∂θ
∂t4 =

∂2θ
∂z42

−S
∂ϕ
∂t4 ð5Þ

where S=L/(cΔT) is the Stefan number, which represents the ratio of
sensible to latent heat, and superscript denotes dimensionless
variables. Using Eq. (1), we can rewrite the heat equation in dimen-
sionless form

∂
∂t4 θ + Sθb

� �
=

∂2θ
∂z42

: ð6Þ

We simplify the non-linearmelt fraction–temperature relationship
by discretizing the domain in segments of various length Δz⁎ with
fixed temperature/melt fraction values at their boundaries. We will
linearize ϕ(θ) over these segments and extract from the model N heat
equations coupled through their moving boundary conditions. The
length of these segments depends on the non-linearity (exponent b) of
the temperature–melt fraction relationship. The size of each segment
in θ space is obtained by satisfying the following condition

j dϕdθ jΔθ =
c1
2 jd2ϕdθ2 jðΔθÞ2; ð7Þ

where c1 is a constant (greater than 1) that ensures that the segment
is short enough that second order terms in the Taylor series expansion
can be neglected. From this condition we can set-up appropriate
temperature boundary conditions that depend on the non-linearity of
ϕ(T)

Δθi = θi−θi−1 =
2

c1ð1−bÞ θi: ð8Þ

We introduce the similarity variable η=zt−1/2 and assume that
the position of boundaries between segments move according to
ξi=λit⁎1/2 and therefore are positioned at constant ηi=ξi (see Fig. 1).

Owing to a stronger non-linear behavior ofϕnear solidus conditions,
we will further assume that ϕ is linear over the whole region opened to
convection. In terms of η the N heat equations become

−η
2
Ω

dθ
dη

=
d2θ
dη2 0≤ η≤ ξ0; ð9Þ

and N−1 segments in the locked-up mush

−η
2
Ω

dθ
dη

=
d2θ
dη2 ξi ≤ η≤ ξi + 1; i = 0;…;N−100; ð10Þ

where we introduced Ω=(1+S). The boundary conditions are

θð0Þ = θb ð11Þ

θðλ0Þ = θlock = ϕ1 = b
l ð12Þ

θðλiÞ = θi i = 1;…;N−1 ð13Þ

θð∞Þ = θ∞ ð14Þ

where ϕl is the melt fraction at the rheological transition, θb is the
temperature of the intrusion and the top boundary condition is
assumed to be at a fixed temperature in the far field. The latter
boundary condition is not ideal in our case and we will assume that
the solution of the thermal problem will only be affected by this
assumption near the top boundary condition. A justification of this
assumption resides in the fact that, owing to the phase diagram of the
mush, the thermal front beyond the interface between convecting and
locked-up mush is restricted to a narrow region because of the low
thermal diffusivity and the presence of melting. It will therefore
contribute to relatively minor errors in the calculation of the average
crystallinity over a large chamber (if the chamber thickness is much
greater than the region of strong thermal gradients near the locking

Fig. 1. Setup of the 1D conceptual model. The dimensionless or similarity variable used
later in the development of the mathematical model is shown in parenthesis for
reference. The physical domain is treated as a succession of N sections coupled through
boundary conditions. This procedure allows us to solve for Eqs. (9) and (10) even for
non-linear temperature–crystallinity relationship as expected from silicic magmas.
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point). Another set of boundary conditions comes from matching the
heat fluxes on each side of each interface

dθ
dη

� �
λ−
0

=
dθ
dη

� �
λþ
0

ð15Þ

dθ
dη

� �
λ−
i

=
dθ
dη

� �
λþ
i

i = 1;…;N−1; ð16Þ

where the subscripts λi
− and λi

+ refer to the positions just below and
above the interface λi.

The solutions to Eqs. (9) and (10) are given by

θðηÞ = θlock−θb

erf Ω1=2λ0

2

� � erf
Ω1=2η

2

 !
+ θb; 0≤ η≤ λ0; ð17Þ

θðηÞ = θi−θi−1

erf Ω1=2λi

2

� �
−erf Ω1=2λi−1

2

� � erf
Ω1=2η

2

 !
−erf

Ω1=2λi−1

2

 !" #
+ θi−1;

λi−1 ≤ η ≤ λi; i = 1;…;N−1

ð18Þ

and finally

θðηÞ = θ∞−θN−1

erfc Ω1=2λN−1

2

� � erf
Ω1=2η

2

 !
−erf

Ω1=2λN−1

2

 !" #
+ θN−1; λN−1≤ η≤H:

ð19Þ

To solve these equations requires determining the values of the
constants λi (i=0,…, N−1). This is done by applying the flux
boundary conditions to get

θlock−θb
θ1−θlock

� �
=

erf Ω1 =2λ0

2

� �

erf Ω1=2λ1

2

� �
−erf Ω1=2λ0

2

� � ; ð20Þ

θi−θi−1

θi + 1−θi

� �
=

erf Ω1=2λi

2

� �
−erf Ω1 =2λi−1

2

� �

erf Ω1=2λi + 1

2

� �
−erf Ω1 =2λi

2

� � ; i = 1;…;N−2; ð21Þ

and

θN−1−θN−2

θ∞−θN−1

� �
=

erf Ω1 =2λN−1

2

� �
−erf Ω1 =2λN−2

2

� �

erfc Ω1 =2λN−1

2

� � : ð22Þ

These coupled equations then need to be solved to obtain the
values of λs and especially λ0 which will allow us to compute the
temperature andmelt fraction profiles at the timewhen the unlocking
front reaches the top of the mush at z=H, the time is given by

τ =
H2

κλ2
0

; ð23Þ

where H is the thickness of the mush. Setting η=z /(κτ)1/2 in Eq. (17),
we can compute the temperature profile and therefore obtain the
average crystallinity at the time the system is fully reactivated. The

average crystallinity is obtained with

〈χ〉 = 1− 1
λ0

∫
λ0

0
θðηÞbdη: ð24Þ

2.1. The effect of convection

Large crystal mushes start to convect when melting unlocks a
region thicker than the critical boundary layer thickness (Turcotte and
Schubert, 2002). The critical boundary layer thickness is controlled by
the rheology of the crystal–melt mixture and the crystallinity–
temperature relationship of the mush. In order to compare the results
obtained with the analytical model for heat conduction presented
above and the results expected when accounting for convective heat
fluxes, we use a simplified model, where we focus on the temperature
profile expected from steady-state convection in a fully reactivated
mush with a temperature and crystallinity-dependent viscosity. We
use empirical and scaling results obtained from stagnant-lid convec-
tion (Davaille and Jaupart, 1993). Fig. 2 illustrates schematically the
temperature profile expected for steady (or time-averaged) convec-
tion once the locking point has reached the top of the mush.

For simplicity we assume that the temperature profiles are linear
in segments between θb and θ1, θ1 and θ2 and θ2 and θlock. We also
assume that the temperature difference driving the convection θ1−θ2
is comparable to the viscous temperature scale ΔTv (Davaille and
Jaupart, 1993)

T1−T2 = Tl−Tsð Þ θ1−θ2ð Þ = ΔTe; ð25Þ

and

ΔTe≈2ΔTv = −2
μðTmÞ
dμ
dT
ðTmÞ

; ð26Þ

where Tm is roughly the average temperature in the convecting part
(T2bTmbT1). We use a temperature and crystallinity-dependent
viscosity (Dingwell et al., 1993)

μðTÞ = μ0 exp
Q

RTini

Tini
T

−1
� �� �

1 + 0:75
χðTÞ=χcr

1−χðTÞ=χcr

� �2
ð27Þ

Fig. 2. Schematic temperature profile in the reactivated mush subjected to whole-scale
steady-state convection.
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where Q is the activation energy (fixed here at 500 kJ/mol), R is the
ideal gas constant, Tini is the reference temperature (consistent with
μ0) andχcr is the critical crystallinity at which themagma behaves like
a solid. The symbols and the values used in the calculations are listed
in Table 1.

Matching heat fluxes at steady-state and assuming a constant
thermal conductivity in the mush (same assumption as for the con-
duction model), we obtain

T1 =
Tbδ1 + δ2ðTlock + ΔTeÞ

δ1 + δ2
ð28Þ

and

T2 =
Tbδ1 + δ2Tlock−δ1ΔTe

δ1 + δ2
; ð29Þ

where δ1 and δ2 are respectively the lower and upper boundary layers.
The upper boundary layer thickness is controlled by the viscous
temperature scale ΔTv and can be estimated with the scaling of
(Davaille and Jaupart, 1993) for stagnant-lid convection cooled from
the top

δ2 =
1
C

ΔTm
ΔTv

−ΔTe
ΔTv

� �
αgΔTv
κνm

� �−1=3
; ð30Þ

where C=0.47 is determined experimentally (Davaille and Jaupart,
1993), κ is the thermal diffusivity and νm is the kinematic viscosity at
T=Tm. The buoyancy effect of crystallinity variations is introduced in
α

α = −ρc−ρm
ρ0

∂ϕ
∂T + αT ; ð31Þ

where αT is the thermal expansion coefficient (about 3×10−5 1/K), ρc
and ρm are the density of the crystals and melt phases.

The lower boundary layer thickness δ1 is determined by matching
heat fluxes

δ1 =
Tb−T1

C αg
κνm

� �1=3
ΔT4 = 3

v

: ð32Þ

The upper boundary layer thickness δ2 depends only on the
rheology and crystallinity–temperature relationships of the magma
once the temperature difference driving convection is greater than the
viscous temperature scale. It is therefore calculated first. The lower
boundary layer thickness δ1 is then calculated from Eqs. (28), (29) and
(32)

δ1 =
AΔTe−δ2 +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AΔTe−δ2ð Þ2 + 4A Tb−Tlockð Þδ2

q
2

; ð33Þ

where

A =
1

C αg
κνm

� �1=3
ΔT4 = 3

v

: ð34Þ

The average crystallinity is then obtained with

〈χ〉 =
1
H
∫
H

0

1− TðzÞ−Ts
Tl−Ts

� �b
" #

dz; ð35Þ

and

TðzÞ =

Tb−ðTb−T1Þ
z
δ1

if 0≤ z≤ δ1

T1−ðT1−T2Þ
z−δ1

H−δ1−δ2
if δ1 ≤ z≤H−δ2

T2−ðT2−TlockÞ
z−ðH−δ2Þ

δ2
if H−δ2 ≤ z≤H:

8>>>>>>><
>>>>>>>:

ð36Þ

Integrating Eq. (36) leads to

〈χ〉 = 1 +
δ1

Hðb + 1Þ
Tl−Ts
Tb−T1

� �
T1−Ts
Tl−Ts

� �bþ1
− Tb−Ts

Tl−Ts

� �bþ1
" #

+
H−δ1−δ2
Hðb + 1Þ

Tl−Ts
T1−T2

� �
T2−Ts
Tl−Ts

� �bþ1
− T1−Ts

Tl−Ts

� �bþ1
" #

+
δ2

Hðb + 1Þ
Tl−Ts

T2−Tlock

� �
Tlock−Ts
Tl−Ts

� �bþ1
− T2−Ts

Tl−Ts

� �bþ1
" #

:

ð37Þ

The average crystallinity for the convective case therefore depends
principally on the viscous temperature scaleΔTv and ultimately on the
choice of crystallinity–temperature relationship (the power-law
exponent b).

Eqs. (20)–(22) are solved numerically to obtain the N λs. We use
Eqs. (20) and (21) to solve for λi, i=1,…,N−1, assuming different
values for λ0. We then compute a residual between the value obtained
for λN−1 from Eqs. (21) and (22). The value of λ0 that minimizes the
residual is then used to compute the average crystallinity of a mush
fully opened to convection with Eqs. (24) and (17). We compute the
final average crystallinity for a range of temperature–crystallinity
power-law exponents b∈ [0.4:1] and intrusion–mush temperature
boundary condition θb∈ [0.5:0.85].

3. Results

Results presented in this paper focus on the post-reheating average
crystallinity of the magma and compare it with the observation of
homogeneous crystal content of Monotonous Intermediates. Fig. 4(a)
shows the average crystallinity of the reactivated mush (once the 50%
crystallinity front has been pushed to the top) as function of the
intrusion temperature θb and the crystallinity–temperature power-law
exponent b. We emphasize that, owing to the self-similar nature of the
temperature profile obtained in Eq. (17), the results are independent of
the mush thickness. However, 1D approximation still requires that the
width of the mush is substantially greater than its thickness.

The average crystallinity found for a rangeof power-lawexponents b
(from1 to0.4; i.e., fromandesite todacite) and for a rangeofΔTbetween
the mush and the intrusion is typically lower than the 40–50% found in
erupted crystal-rich ignimbrites (Fig. 4(a–b)). Fig. 4(a) shows that for a
fixed intrusion–mush boundary condition temperature θb=0.6, the
average crystallinity inferred from the conduction model is a strong
function of the power-law exponent. Melting of crystal mushes with a
higher power-law exponent b (closer to linear temperature–crystallin-
ity relationship) leads to afinal average crystallinity that is close towhat
is observed for crystal-rich dacitic eruptedmagmas. However, as shown
by Huber et al. (2009, 2010) (see Fig. 3), dacitic mushes are better
described with exponents b=0.4−0.5, i.e. where a greater part of the
overall melting happens just above the solidus. For these low b values,
the expected final average crystallinity of the reactivated mush is
ranging between 0.3 and 0.38 depending on the value of intrusion–
mush temperature boundary condition θb.

Results of pre-eruptive average crystallinity obtained with the
convectionmodel for a 2 km thickmagma body illustrate the importance
of (1) the boundary temperature between the two magmas (θb) and (2)
the power-law exponent for the crystallinty–temperature relationship

101C. Huber et al. / Journal of Volcanology and Geothermal Research 195 (2010) 97–105
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(Fig. 4(b)). The boundary temperature controls the temperature and
therefore the physical properties of the magma within the convecting
layer, the crystallinity–temperature relationship controls the rheology of
the magma and therefore the viscous temperature scale ΔTv. For low b
values, the average crystallinity expected from steady-state convection
ranges from 0.22 to 0.29, significantly lower than crystallinities observed
in the deposits.

4. Discussion

4.1. Final average crystallinity

Our calculations, summarized in Fig. 4, illustrate the difficulty of
satisfying the 45% average crystallinity constraint for fully reactivated
musheswhen invoking onlymelting. The only conditions underwhich
the final average crystallinity is close to the 40–50% crystallinity
window observed in many large crystal-rich dacitic ignimbrites are
consistent with much more mafic mush compositions (b→1).

However, such reactivated andesitic crystal-rich units are yet to be
found in the rock record (Hildreth, 1981; Christiansen, 2005;
Bachmann and Bergantz, 2008). In addition, convection is expected
to occur when parts of the mush become unlocked, and our results
show that final average crystallinities are even lower in this case, as
convection leads to a more efficient heat transfer between the
intrusion and the mush.

The importance of b on the mush average crystallinity is logical. It
controls the partitioning of enthalpy between sensible and latent heat
and therefore the degree of melting expected for a given amount of
heat injected in the mush. At small b values, melting is expected to
become more important at temperatures close to the solidus and a
greater portion of the heat flux is absorbed to reduce the crystallinity
of the mush, leading to lower average crystallinity values.

An important assumption in our analytical model is that the
temperature at the intrusion–mushboundary remains constant during
the whole melting process. This assumption results in an overestima-
tion of the heat transfer when compared to real cases where the
thermal disequilibrium between the twomagmas decreases as a result
of the mush heating up and the intrusion cooling down. The interface
temperature decreases with time as expected from conjugate heat
transfer problems (Huber et al., 2010).

We dealwith this assumption by calculating the expected variation
of the averagemush crystallinity as function of various fixed boundary
condition temperature θb. The initial temperature difference θb−θlock
ranges from 0.05 to 0.4 which represent respectively a difference of
temperature of 15 and 120 °C between the intrusion and the
rheological locking point temperature (crystallinity of 0.5). We
observe that for a mush close to its eutectic point (small b) the final
crystallinities are underestimating what we observe in the field, even
for cases where the intrusion temperature is very close to the
temperature corresponding to the locking point. Realistic cooling
temperature boundary evolution between the intrusion and the mush
are expected to be consistentwith, early on, a large difference between
the temperature of the intrusion and the locking temperature (high θb)
and decreasing θb values with time. Qualitatively, the calculations
conducted at low θb values can be used to represent the late stage
evolution between the two magmas, but probably underestimate the
amount of melting early after the injection of the intrusion.

Fig. 3. Crystallinity–temperature relationships for the mush from Eq. (1) for different
values of b. As b decreases towards 0, the system tends to melt more just above the
solidus temperature. The crystallinity–temperature relation for the Fish Canyonmagma
body (dacite) calculated with MELTS (Ghiorso and Sack, 1995) is shown as a reference.
The Fish Canyon magma is consistent with an exponent b∼0.4.

Fig. 4. Average crystallinities obtained with the analytical model for a locking point crystallinity of 0.5. The figure compares the conduction (a) and convection (b) models for various
choices of temperature boundary conditions at the mush–intrusion interface (θb) and crystallinity–temperature power-law exponents (b).
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Another poorly constrained parameter is the critical crystallinity at
the rheological locking point which is usually assumed to be between
0.5 and 0.6. This threshold is usually determined from static percolation
theory arguments and is expected to vary as a function ofmelt viscosity,
suspended solid aspect ratios and applied stress. We show the
sensitivity of the results with respect to the critical crystallinity in
Fig. 5. If the crystallinity at the transition between a static rigid and a
viscously deforming magma occurs at higher crystallinity (here, for
example, χl=1−ϕl=0.6 and the initial mush crystallinity is set to
0.65), we observe, as expected, that the final average crystallinity is
shifted to higher values. We note that under realistic circumstances,
when the intrusion–mush temperature does not remain close to the
locking temperature of the mush θlock for the whole duration of the
melting event, the final crystallinity in our calculations usually under-
estimates field observations by at least 5 to 20%.

4.2. Energy requirements

Although the fixed temperature boundary condition between the
mush and the intrusion implies that the intrusion is an infinite reservoir
of heat, we can calculate the amount of energy that the intrusion has to
provide topush the entiremushoutof a locked-up state. This calculation
allows us to assess the feasibility of the different melting scenarios. We
will first assume that the heat transfer efficiency between the two
magmas is 1, i.e. that all the heat lost by the intrusion is absorbed by the
mush only. This assumption has been shown to be a very crude over-
estimate as thermal calculation usually result in to efficiency values of
about 0.1 (Dufek and Bergantz, 2005). We calculate the thickness of
intrusion H that is required to melt a mush of thickness H

Rh≡
H
H

=
∫
H

0

cΔT + LΔϕð Þdz

H cΔ T
– + LΔ ϕ–

� � ; ð38Þ

where the over bar refers to quantity averaged over the volume of the
intrusion. We assumed the average specific heat c and latent heat L to
be similar in both magmas, but use a different crystallinity–

temperature relationship with b=1 for the intrusion and b∈ [0.4:1]
for the mush. These calculations therefore correspond to the case
where the intrusion is more mafic (andesitic) than the mush (dacite
to andesite).

Fig. 6 shows the thickness ratio Rh for a lock-up crystallinity of 0.5.
The amount of energy required by the intrusion to melt the mush
depends strongly on the phase diagram of the mush (b). The enthalpy
transferred from the intrusion is partitioned in sensible and latent heat
in the mush. As our condition on the reactivation of the mush is based
on the propagation of a melting front characterized by a critical
crystallinity, the different melting scenarios calculated here require a
comparable amount of heat absorbedbymelting. However the amount
of sensible heat absorbed by the mush depends on b. For a linear
temperature–crystallinity relationship (b=1), the ratio of sensible to
latent heat required to reduce the crystallinity by a given amount is
constant between the solidus and the liquidus Rsl=c(Tl−Ts)/L. This is
no longer true for bb1 where for a small given temperature shift from
Ta to Tb

Rsl =
cðTb−TaÞ

LðχðTaÞ−χðTbÞÞ
∼
c Ta−Ts

Tl−Ts

� �1−b

Lb
; ð39Þ

which illustrates that for bb1 and Ta−Ts≪Tl−Ts, the ratio of sensible
to latent heat that the mush needs to absorb gets smaller as b
decreases. This, together with the assumption that the amount of
enthalpy absorbed by melting is roughly similar in all cases, explains
why the overall energy input required to reactivate a thermal mush
increases with b. The last variable, the temperature of the intrusion θb,
influences the amount of energy that a given volume of intrusion will
be able to transfer to themush. The size of the intrusion required by the
simple energy balance statement of Eq. (38) decreases as θb increases.

The size of the intrusion varies roughly by one order of magnitude
depending on the choice of b and θb for the conduction model. As
previouslymentioned, the simple balanceof Eq. (38) assumes a perfect
efficiency in the heat transfer between the twomagmas, i.e. that all the
energy lost by the intrusion is transferred to the mush. Most recent
thermal calculations however show that the efficiency is about 10%

Fig. 5. Average crystallinities obtained with the analytical model for a locking point crystallinity of 0.6. The figure compares the conduction (a) and convection (b) models for various
choices of temperature boundary conditions at the mush–intrusion interface (θb) and crystallinity–temperature power-law exponents (b).
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Fig. 7. Comparison of our results in terms of energy efficiency (here 10 times the thickness ratio H/H) and average crystallinity for different power-law exponents b and viable
melting scenarios satisfying the crystallinity constraint and where the intrusion size does not exceed the size of the mush. We compare results for two different intrusion–mush
temperatures θb and both conduction and convection.

Fig. 6. Thickness of intrusion required for melting normalized by the thickness of the mush for a locking point crystallinity of 0.5, assuming that all the heat lost by the intrusion is
transferred to the mush only.
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only. Using a 10% efficiency leads to intrusion sizes with an order of
magnitude greater than the ones we calculated (i.e. intrusion thicker
than the mush by about an order of magnitude). In all cases, even
extreme intrusion fluxes over the existence of the mush will not be
able to thermally reactivate midsize to large crystal mushes.

Optimal melting scenarios have to (1) satisfy the 40–50% average
crystallinity constraint and (2) be sufficiently efficient energetically,
which requires, at most, the emplacement of a volume of underplating
magma of comparable size with the mush. Fig. 7 summarizes the
results of our calculations for a range of mush temperature–
crystallinity relationships and two different intrusion–mush temper-
ature boundary conditions from both conduction and steady convec-
tion models. We fixed the thermal efficiency (fraction of heat loss by
intrusion that is absorbed by the overlyingmush) to 10% in agreement
with thermal calculations. The results of our calculations are
represented by open dots with a color-coding depending on the
value of the power-law exponent b. The region of the plots that
satisfies the average crystallinity and energy constraints is shaded.We
arbitrarily choose the upper bound of the shaded area for 10Rh to be 1
for plausible thermal reactivation scenarios, as it represents a
maximum thickness of intrusion comparable to the mush. This
upper bound can be expanded to slightly higher values of 10Rh for
small mushes. We observe that, over the range of parameters
explored in our calculations, no melting scenario comes even close
to satisfying both constraints.

5. Conclusions

The existence of erupted crystal-rich ignimbrites that often show
evidence of pre-eruptive rejuvenation is often attributed to thermal
reactivation events of locked crystal mushes associated with the
underplating of more mafic magma intrusions. Erupted crystal
mushes typically have a crystallinity of 40 to 50%, which imposes a
strong constraint on the dynamical process that reactivates these
systems prior to eruptions. In this study we focus on testing the ability
of different melting scenarios associated with intrusions of magma to
satisfy this crystallinity constraint.

We present a 1D analytical thermal model that solves for the heat
transfer and melting of crystalline mushes with various temperature–
crystallinity relationships. The model solves for the temperature and
crystallinity distribution of the mush at any time and especially when
the entire mush is open to convection. The existence of analytical
solutions limits the model to either purely conductive cases or a
parameterization of the convective heat flux in terms of a stagnant-lid
convection scalings. We show that for the range of crystallinity–
temperature relationships expected in silicic mushes (b∼0.4–0.5), the
average crystallinity in the mushes that have melted sufficiently to
develop full-scale convection is significantly less than the crystal-
linities observed in the field. Moreover, the remarkable homogeneity
of the eruptive products is consistent with a physical model that
includes convection and our choice of average crystallinity as a
measure for chamber reactivation.

Furthermore, the thermal energy input needed to reactivate these
systems requires intrusions that are at least one order of magnitude
more voluminous than the mush. This suggests that thermal
reactivation of mushes by injection of new magma cannot be the
unique process that leads to the reactivation of midsize and large
crystal mushes. Another process, combined with melting, is therefore
required. This additional process has to (1) be more energetically
favorable than melting alone and (2) be able to reactivate the mush
with a smaller reduction of crystallinity than melting alone.

Acknowledgements

Wewould like to thankMichaelManga for stimulating discussions.
C.H. was supported by a Swiss postdoctoral fellowship PBSKP2-
128477, O.B was supported by NSF-EAR grant 0809828 and J.D. was
supported by NSF-EAR grant 0838200.

References

Bachmann, O., Dungan, M.A., 2002. Temperature-induced Al-zoning in hornblendes of
the fish Canyon magma, Colorado. American Mineralogist 87, 1062–1076.

Bachmann, O., Dungan, M.A., Lipman, P.W., 2002. The Fish Canyonmagma body, San Juan
volcanic field, Colorado: rejuvenation and eruption of an upper crustal batholith.
Journal of Petrology 43, 1469–1503.

Bachmann, O., Bergantz, G.W., 2004. On the origin of crystal-poor rhyolites: extracted
from batholitic crystal mushes. Journal of Petrology 45, 1565–1582.

Bachmann, O., Bergantz, G.W., 2006. Gas percolation in upper-crustal silicic crystal
mushes as a mechanism for upward heat advection and rejuvenation of near-
solidus magma bodies, Colorado. J. Volcanol. Geotherm. Res. 149, 85–102.

Bachmann, O., Bergantz, G.W., 2008. Rhyolites and their source mushes across tectonic
settings, Colorado. Journal of Petrology 49, 2277–2285.

Christiansen, E.R., 2005. Contrasting processes in silicic magma chambers: evidence
from very large volume ignimbrites. Geological Magazine 6, 669–681.

Costa, F., 2008. Residence times of silicic magmas associated with calderas. In: Marti, J.,
Gottsmann, J. (Eds.), Development in Volcanology, 10. Elsevier, pp. 1–55.

Couch, S., Sparks, R.S.J., Carroll, M.R., 2001. Mineral disequilibrium in lavas explained by
convective self-mixing in open magma chambers:. Nature 411, 1037–1039.

Davaille, A., Jaupart, C., 1993. Transient high-Rayleigh-number thermal convectionwith
large viscosity variations. Journal of Fluid Mechanics 253, 141–166.

Dingwell, D.B., Bagdassarov, N.S., Bussod, J., Webb, S.L., 1993. Magma rheology. Short
Handbook on Experiments at High Pressure and Applications to the Earth's Mantle:
Mineral. Assoc. Canada, 21, pp. 131–196.

Dufek, J., Bergantz, G.W., 2005. Lower crustal magma genesis and preservation: a stochastic
framework for the evaluation of basalt–crust interaction. Journal of Petrology 46,
2167–2195.

Feltham, D.L., and Worster, M.G., Similarity solution describing the melting of a mush:
Journal of Crystal Growth, v.208, p. 746–756.

Folkes, C.B., de Silva, S.L., Wright, H.M., and Cas, R.A.F., in press, Geochemical
homogeneity of a long-lived, large silicic system; evidence from the Cerro Galán
caldera, NW Argentina: Bulletin of Volcanology.

Ghiorso, M.S., Sack, R.O., 1995. Chemical mass transfer in magmatic processes IV: a
revised and internally consistent thermodynamic model for the interpolation and
extrapolation of liquid–solid equilibria in magmatic systems at elevated tempera-
tures and pressures. Contributions to Mineralogy and Petrology 119, 197–212.

Hildreth, W., 1981. Gradients in silicic magma chambers: implications for lithospheric
magmatism. Journal of Geophysical research 86, 10153–10192.

Huber, C., Bachmann, O., Manga, M., 2009. Homogenization processes in silicic manga
chambers by stirring andmushification (latent heat buffering). Earth and Planetary
Science Letters 283, 38–47.

Huber, C., Bachmann, O., Manga, M., 2010. Two competing effects of volatiles on heat
transfer in crystal-richmagmas: thermal insulation vs defrosting. Journal of Petrology
vol. 51, 847–867.

Koyaguchi, T., Kaneko, K., 1999. A two-stage thermal evolution model of magmas in
continental crust. Journal of Petrology 40, 241–254.

Koyaguchi, T., Kaneko, K., 2001. Thermal evolution of silicic magma chambers after
basalt replenishment:. Transactions of the Royal Society of Edimburgh 91, 47–60.

Lindsay, J.M., Schmitt, A.K., Trumbull, R.B., de Silva, S.L., Emmermann, R., 2001. Magmatic
evolution of the La Pacana caldera system, Central Andes, Chile: compositional variation
of the two cogenetic, large-volume felsic ignimbrites. Journal of Petrology 42, 459–486.

Lipman, P.W., 2004. Geological Map of the Central San Juan Caldera cluster, Southwestern
Colorado. USGS Open File reprt, p. 2799.

Maughan, L.L., Christiansen, E.H., Best, M.G., Gromme, C.S., Deino, A.L., Tingey, D.G.,
2002. The Oligocene Lund Tuff, Great Basin, USA: a very large volume monotonous
intermediate. Journal of Volcanology and Geothermal Research 113, 129–157.

Marsh, B.D., 1981. On the crystallinity, probability of occurence, and rheology of lava
and magma:. Contribution to Mineralogy and Petrology 78, 85–98.

Petford, N., 2003. Rheology of granitic magmas during ascent and emplacement: Annual
Reviews of Earth and Planetary Sciences 31, 399–427.

Ruprecht, P., Bergantz, G.W., Dufek, J., 2008. Modeling of gas-driven magmatic
overturn: tracking of phenocryst dispersal and gathering during magma mixing.
Geochem. Geophys. Geosyst 9 (7). doi:10.1029/2008GC002022.

Turcotte, D.L., Schubert, G., 2002. Geodynamics, 2nd Edition. Cambridge University Press.
Turner, S., Costa, F., 2007. Measuring timescales of magmatic evolution. Elements 3,

267–272.
Vigneresse, J.-L., Barbey, P., Cuney, M., 1996. Rheological transitions during partial

melting and crystallization with application to felsic magma segregation and
transfer. Journal of Petrology 37, 1579–1600.

105C. Huber et al. / Journal of Volcanology and Geothermal Research 195 (2010) 97–105


