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Abstract

Thermochronometry based on radiogenic noble gases is critically dependent upon accurate knowledge of the kinetics of
diffusion. With few exceptions, complex natural crystals are represented by ideal geometries such as infinite sheets, infinite
cylinders, or spheres, and diffusivity is assumed to be isotropic. However, the physical boundaries of crystals generally do
not conform to ideal geometries and diffusion within some crystals is known to be anisotropic. Our failure to incorporate such
complexities into diffusive models leads to inaccuracies in both thermal histories and diffusion parameters calculated from
fractional release data. To address these shortcomings we developed a code based on the lattice Boltzmann (LB) method
to model diffusion from complex 3D geometries having isotropic, temperature-independent anisotropic, and temperature-
dependent anisotropic diffusivity. In this paper we outline the theoretical basis for the LB code and highlight several advan-
tages of this model relative to more traditional finite difference approaches. The LB code, along with existing analytical
solutions for diffusion from simple geometries, is used to investigate the affect of intrinsic crystallographic features (e.g.,
crystal topology and diffusion anisotropy) on calculated diffusion parameters and a novel method for approximating thermal
histories from crystals with complex topologies and diffusive anisotropy is presented.
� 2011 Elsevier Ltd. All rights reserved.
1. INTRODUCTION

The 40Ar/39Ar, 4He/3He, and (U–Th)/He techniques
have emerged as powerful tools for quantifying low-tem-
perature thermal histories of rocks. The accuracy of results
obtained from these methods is critically dependent on our
knowledge of Ar and He diffusion kinetics (Ea and Do) in
the minerals of interest (e.g., K-feldspar, biotite, horn-
blende, plagioclase, apatite, zircon, titanite, etc.). Published
diffusion parameters used in thermochronometry are com-
monly derived from degassing experiments relating frac-
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tional loss to diffusivity (D) based on analytical solutions
for simple geometries, such as an infinite cylinder, infinite
sheet, sphere, or cube, assuming that diffusion is isotropic.
However, the physical boundaries of crystals, which have
been shown to define the diffusion domain in many cases
(e.g., Goodwin and Renne, 1991; Wright et al., 1991;
Wartho et al., 1999; Farley, 2000; Farley and Reiners,
2001), commonly have more complex shapes, which raises
the question of how seriously the idealization of geometry
affects the accuracy of results. Furthermore, given the struc-
tural anisotropy of many minerals, the possibility of diffu-
sion anisotropy must be considered. Only rarely have
empirical studies documented anisotropy of noble gas diffu-
sion in crystals (e.g., Giletti, 1974; Hames and Bowring,
1994; Farley, 2000, 2007; Reich et al., 2007; Cherniak
et al., 2009; Saadoune and De Leeuw, 2009; Saadoune

http://dx.doi.org/10.1016/j.gca.2011.01.039
mailto:christian.huber@eas.gatech.edu
mailto:cassata@berkeley.edu
mailto:prenne@bgc.org
http://dx.doi.org/016/j.gca.2011.01.039


A lattice Boltzmann model for noble gas diffusion in solids 2171
et al., 2009), but it can be argued that few experiments have
been employed that would detect such a feature.

In this paper we describe a code based on the lattice
Boltzmann (LB) method to model diffusion from complex
3D crystal domains having isotropic, temperature-indepen-
dent anisotropic, and temperature-dependent anisotropic
diffusivity. We use the code to (1) assess the affect of intrin-
sic crystallographic features (e.g., crystal topology and dif-
fusion anisotropy) on diffusion parameters obtained by
regressing D/a2 values calculated from fractional loss data
using analytical solutions for simple geometries like an infi-
nite sheet or a sphere, and (2) validate a novel method for
approximating thermal histories from crystals with complex
topologies and diffusive anisotropy. The methods and re-
sults presented in these papers are applicable to both He
and Ar diffusion in which the physical crystal defines the
domain boundary, or in principle to cases involving sub-
crystal domains whose shapes can be described.

2. THE PHYSICS

The diffusive transport of chemical elements in a solid is
governed by the general diffusion equation, given by
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where Di is the molecular diffusion coefficient in the i-direc-
tion and C(x, y, z) is the concentration of the species of
interest at the spatial location of interest.1 Molecular diffu-
sion coefficients depend on the chemical and structural
characteristics of the solid host, parameterized here with
w, the local temperature T, and the pressure of confinement
p (although they are less sensitive to the latter). Molecular
diffusivity is strongly temperature-dependent and can be de-
scribed by the following Arrhenius relationship

DðT ;w; pÞ ¼ D0ðw; pÞ exp � Ea

RT

� �
; ð2Þ

where D0ðw; pÞ is a reference diffusivity extrapolated from
infinite temperature, Ea is the activation energy, and R is
the gas constant.

The general form of Eq. (1) cannot be solved analyti-
cally. However, when the diffusion coefficient is uniform
in all crystallographic directions and the initial concentra-
tion distribution is homogeneous, one can solve Eq. (1)
for simple geometries involving high degrees of symmetry.
Analytical solutions for diffusion from a sphere, an infinite
sheet, and an infinite cylinder exist because their geometric
symmetries reduce Eq. (1) to a one-dimensional (1D) prob-
lem with a similarity solution, where the single similarity
variable (g) is given by

g ¼ rffiffiffiffiffi
Dt
p : ð3Þ

The similarity variable is obtained by balancing the left-
hand side and the reduced (single term) right-hand side of
1 Eq. (1) is the general diffusion equation in Cartesian coordi-
nates for electrically neutral atoms, in the absence of a production
term and Soret effects.
the 1D form of Eq. (1). The existence of a similarity solu-
tion in 1D allows us to normalize the space–time relation-
ship of the diffusion equation in terms of a Fourier
number (Fo), given by

Fo ¼ Dt

L2
; ð4Þ

where L is the natural diffusive length scale (e.g., the radius
of the spherical crystal). The concentration profile in a 1D
diffusion problem is self-similar (i.e., identical for every
problem with the same Fo). In other words, once distance
and time are normalized with L and L2/D, respectively,
1D diffusion profiles calculated with similar initial and
boundary conditions are identical, and Fo fully character-
izes the state of the system in the absence of a source term
such as production by radioactive decay.

Complex geometries cannot be reduced to 1D, and a sin-
gle similarity variable that captures the whole physics of the
problem no longer exists. Up to three similarity variables
are required (one for each spatial dimension), which are gi-
ven by

gx ¼
xffiffiffiffiffiffiffi
Dxt
p ; gy ¼

yffiffiffiffiffiffiffi
Dyt

p ; gz ¼
zffiffiffiffiffiffiffi
Dzt
p : ð5Þ

Scaling Eq. (1) with three independent length scales Lx,
Ly, and Lz (representing the natural dimensions of a crystal
aligned with the Cartesian coordinate axes), we obtain
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where x*, y*, and z* represent the spatial coordinates nor-
malized by Lx, Ly, and Lz, respectively, and t* is the dimen-
sionless time normalized by the characteristic timescale of
the process of interest (e.g., Ly

2/Dy using the y-axis as a
reference).

The following dimensionless numbers are implicit in Eq.
(6):

Fox ¼
Dxt

L2
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Dyt

L2
y
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z

: ð7Þ

For the case of an infinite slab with normal along the x-
direction, Fox is the only non-zero Fourier number (Foy =
Foz = 0). For a sphere, Fox = Foy = Foz and the problem
is one dimensional in spherical coordinates. Finally, for
an infinite cylinder aligned with z, Fox = Foy and Foz = 0
and the problems reduces to a single spatial dimension in
cylindrical coordinates.

The relative importance of any two right-hand terms in
Eq. (6) is given by the ratio of the dimensionless Fourier
numbers. Assuming no anisotropy of diffusivity, diffusion
along the axis corresponding to the smallest dimension of
the crystal (Li < Lj–i) dominates the right-hand side of
Eq. (6) and largely controls the rate of loss of the diffusant.
In the case where Li << Lj–i, the problem can be reduced to
a single Fourier number Foi and an analytical similarity
solution. Most natural crystals have complex topologies
that cannot be reduced to a single similarity variable, and
therefore cannot be modeled using simple 1D finite-differ-
ence methods, which prompted us to develop a model based
on the lattice Boltzmann (LB) method for diffusion.
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3. THE LATTICE BOLTZMANN CODE

In LB, the physics is not described by continuum
mechanics, but rather by the evolution of a set of particle
distribution functions fi from which the continuum
mechanics equation can be retrieved as averages. The LB
method is based on statistical mechanics (kinetic theory),
where continuum equations (e.g., Navier–Stokes, diffusion,
etc.) are represented by the advection and collision of par-
ticle distribution functions (PDF’s). The domain (crystal) is
discretized into a lattice wherein the PDF’s move from one
node to another and redistribute momentum upon collision
(Frisch et al., 1986; Qian et al., 1992; Chopard and Droz,
1998). Movement throughout the lattice is described by a
discretized version of Boltzmann’s equation with a simpli-
fied collision frequency x (Bhatnagar et al., 1954), given by

fiðxþ vidt; t þ dtÞ � fiðx; tÞ ¼ xðf eq
i ðx; tÞ � fiðx; tÞÞ; ð8Þ

where x and vi are the position on the lattice and the veloc-
ity vector connecting two neighbor nodes, respectively (see
Fig. A2). Thus Eq. (8) reflects the probability of finding a
particle at position x and time t with velocity vi. Diffusivity
is incorporated in the discretized Boltzmann’s equation
through the collision frequency x according to the follow-
ing equation:

D ¼ c2
s dt

1

x
� 1

2

� �
; ð9Þ

where cs
2 is a constant (the “sound speed” of the lattice)

that depends on the connectivity of lattice nodes and is
equal to 1/3. In this model lattice nodes are simply con-
nected by orthogonal links, which gives rise to five velocity
vectors in 2D (north, south, east, west, and rest; D2Q5) and
seven velocity vectors in 3D (north, south, east, west, up,
down, and rest; D3Q7).

The equilibrium distribution fi
eq is given by

f eq
i ðx; tÞ ¼ wi Cðx; tÞ; ð10Þ

where wi are the lattice weights equal to 1/3 (w0) and 1/6
(w1, w2, w3, w4) for D2Q5 and 1/4 (w0) and 1/8 (w1, w2,
w3, w4, w5, w6) for D3Q7.

We define the local concentration to be the sum of the
probability distributions, given by

C ¼
XQ�1

i¼0

fi ¼
XQ�1

i¼0

f eq
i : ð11Þ

where Q is 5 in 2D and 7 in 3D.
After summing the particle distribution functions at

each node, the 3D diffusion equation is obtained through
a Chapman-Enskog expansion of Eq. (8) (see Wolf-
Gladrow (2000) for a derivation of the diffusion equation
from Boltzmann’s equation). Thus the redistribution of
mass within the lattice is described by the 3D diffusion
equation. For more information on the development and
implementation of lattice Boltzmann methods the reader
is referred to Chopard and Droz (1998), Wolf-Gladrow
(2000), and Succi (2002).

To model diffusion from arbitrarily complex topologies
using the LB code, we designed a novel algorithm based
on the idea of a phase transition to fix the concentration
at the domain boundary. During a pure substance phase
transition, the temperature at the interface between the
two substances is constant. When the latent heat of fusion
(enthalpy) is arbitrarily large, the interface remains fixed
both spatially and at the phase transition temperature. Be-
cause heat and mass diffusion are governed by the same
equations, concentration is interchangeable with tempera-
ture and we can model a fictitious “phase transition” at
constant concentration between the diffusing domain and
a hypothetical surrounding phase. The fictitious enthalpy
is given by

H ¼ ccC þ Lþ /; ð12Þ

where cc is the equivalent of a specific heat, L is the latent
heat, and / is the melt fraction. The surrounding medium
(e.g., a vacuum) is set at the phase transition concentration,
which coincides with the boundary concentration Cb. The
diffusive flux out of the crystal is absorbed by the latent
heat, which is set such that L/(cc DC) >> 1, where DC is
the difference between the initial concentration in the crys-
tal and Cb. Each point of the computational domain (the
crystal and surrounding vacuum) is governed by the same
equation (diffusion with a latent heat term), which renders
the model irrespective of the geometry of the diffusing crys-
tal. This technique obviates the need to interpolate the local
diffusive flux at the boundary tangential and normal to the
interface. The infinite enthalpy method is described in
greater detail in Huber et al. (2008).

The LB code is particularly apt for natural diffusion pro-
cesses from complex geometries because difficulties associ-
ated with rescaling the mean free path between
consecutive collisions in Monte Carlo simulations as parti-
cles approach the domain boundary (e.g., Gautheron and
Tasson-Got, 2010) are obviated. Furthermore, in LB each
node can have unique physical properties, including initial
concentration and directionally dependent diffusivity. Thus
realistic mineralogical and microstructural features like
asymmetrical concentration gradients, exsolution lamellae
of differing diffusion kinetics, and diffusive sinks are readily
incorporated. Lastly, the LB model can be efficiently coded
for parallel computing to simulate 3D diffusion problems at
high resolution (e.g., 0.1 micron exsolution lamellae). Pend-
ing appropriate funding support for development, we antic-
ipate releasing an easy-to-use software package with an
extensive graphical user interface in the near future. In
the interim, those interested in using the LB method are
encouraged to contact us to obtain the existing codes. Addi-
tional information on the code can be found at http://hu-
ber.eas.gatech.edu/diffusion.html.
4. PROOF OF ACCURACY AND DEMONSTRATION

OF BASIC MODELING CAPABILITIES

To validate the accuracy of our model in 3D, we tested it
against the analytical solution for diffusive loss from a
sphere (Carslaw and Jaeger, 1959; Crank, 1975; see also
McDougall and Harrison, 1999). Fig. 1 illustrates the excel-
lent agreement between the analytical solution and the re-
sults we obtain from our lattice-Boltzmann diffusion
model using the enthalpy method to enforce Cb = 0 at the
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Fig. 1. (A) Plot of fractional loss (F) as a function of Fourier number (Fo = Dt/a2) for the spherical LB model compared to the analytical
solution for diffusive loss from a sphere. (B) Difference in fractional loss (analytical solution – LB model) as a function of Fo. The LB code is
> 99% accurate at all Fo.
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domain boundary. We used a Cartesian (xyz) grid of 2003

(8 � 106) nodes for this benchmark calculation. All calcula-
tions throughout this paper have a minimum resolution of
50 nodes per crystallographic axis. The numerical model is
2nd order accurate (i.e., accuracy increases with the square
of the resolution).

A significant advantage the LB method relative to more
traditional finite difference approaches is the ease with
which realistic crystal geometries can be modeled. Con-
structing a crystal in the LB code is much like assembling
square blocks into a 3D structure. Complex topologies
are discretized into a lattice comprising thousands of nodes.
For example, in Fig. 2 we show concentration maps taken
from diffusion models of a cube and a tetragonal prism with
pyramidal terminations. By inspection of the fractional loss
(F) as a function of Fourier number (Fo) shown in Fig. 2, it
is clear that the tetragonal prism with pyramidal termina-
tions diffuses at markedly different rate than a similarly
sized sphere.

In addition to complex topologies, the LB code is capa-
ble of incorporating diffusive anisotropy, either of constant
Fig. 2. 3-D diffusion models of a cube (center) and tetragonal prism with
concentration surface (normalized between 0 and 1) at different time steps.
pyramidal terminations, a cube, and a sphere. For each shape “a” in D

pyramidal terminations to the nearest face. (For interpretation of referen
version of this article.)
activation energy (Ea) and differing frequency factor (Do)
(temperature-independent anisotropy) or differing Ea and
Do (temperature-dependent anisotropy). Because the diffu-
sive flux in a given crystallographic direction is fully de-
scribed by the Fourier number (Fo = Dt/a2) for that axis,
a doubling of the diffusive lengthscale is mathematically
equivalent to reducing the diffusivity by a factor of four.
We rely upon this mathematical equivalency of diffusive
and geometric anisotropy to validate the accuracy of our
model when diffusive anisotropy is incorporated. Fig. 3 de-
picts F as a function of Fo for several hypothetical rectan-
gular crystals, one of which has temperature-independent
anisotropy (same Ea, different Do). By inspection it is clear
that if diffusivity in the longer crystallographic direction is
faster by a factor of e2, where e is the aspect ratio, then dif-
fusion proceeds at the same rate as from an e = 1 rectangle
(a perfect square) wherein diffusivity in both directions is
isotropic. For example, diffusion from an e = 3 rectangle
with 9� faster diffusivity in the long direction proceeds in
the same manner as that from an e = 1 rectangle wherein
diffusivity in both directions is equivalent. We return to
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(e) between 1 and 4. The e = 4 rectangle has temperature-independent anisotropy, where diffusivity in longer crystallographic direction is 16�
faster than the shorter direction. Because the diffusivity in the longer direction is faster by a factor of e2, diffusion proceeds at the same rate as
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the concept of the mathematical equivalency of diffusive
and geometric anisotropy in the following section.

Temperature-dependent anisotropy (different Ea) can
also be incorporated into the LB code. To illustrate this fea-
ture we have generated an Arrhenius plot from a hypothet-
ical rectangular crystal wherein diffusion along the shorter
crystallographic axis has a lower Ea for diffusion (46.7 kJ/
mole) than the longer axis (170 kJ/mole) (Fig. 4). The
Arrhenius relationships intersect (define a “kinetic cross-
over”; Reiners, 2009) at 800 �C. Thus at lower temperatures
diffusion proceeds primarily along the short axis and at
higher temperatures diffusion proceeds primarily along
the long axis. At temperatures in the vicinity of the kinetic
ln
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Fig. 4. Arrhenius plot for a hypothetical rectangular crystal having
temperature-dependent anisotropy. The red and blue lines are the
Arrhenius relationships that define diffusion in the E–W and N–S
crystallographic directions, respectively (see inset). The Arrhenius
array that results from the incremental degassing of this rectangle
(grey diamonds) is curved with a pronounced upward inflection,
which reflects the transition from diffusion proceeding predomi-
nately along the shorter crystallographic direction at low-T to the
longer crystallographic direction at high-T. (For interpretation of
the references to color in this figure legend, the reader is referred to
the web version of this article.)
crossover, diffusion proceeds along both axes at similar
rates. By inspection of Fig. 4 it is evident that crystals hav-
ing temperature-dependent diffusive anisotropy yield up-
wardly kinked or curved Arrhenius plots [see also Watson
et al. (2010)]. The extent to which an Arrhenius array is
curved or kinked depends upon the contrast in Ea and Do

and the aspect ratios of the axes. In the following section
we show that crystals having non-ideal geometries and/or
temperature-independent anisotropy also yield curved
Arrhenius arrays.

5. THE IMPORTANCE OF DOMAIN SHAPE AND

DIFFUSIVE ANISOTROPY ON CALCULATED

DIFFUSION PARAMETERS

Diffusion parameters (Ea and Do) are commonly derived
from degassing experiments relating fractional loss to diffu-
sivity using analytical solutions for simple geometries, such
as an infinite sheet or sphere. However, these two end-mem-
ber diffusive geometries (i.e., the maximum and minimum
surface area to volume ratio for a given diffusive radius,
respectively) are not representative of most natural crystals.
Assuming that natural crystals can be represented by
spheres a priori overestimates the diffusive isotropy in 3D,
whereas assuming they can be represented by infinite sheets
a priori underestimates the isotropy in 3D. Plotting a given
set of fractional release data on an Arrhenius plot using
analytical solutions for both geometries places bounds on
the Ea and Do/a2 of the crystal, but does not constrain
the true diffusion parameters of the sample of interest. Here
we use both analytical solutions and the LB model to assess
the inherent inaccuracies in diffusion parameters derived in
this manner.

In Fig. 5 four sets of fractional release data calculated
for the incremental degassing of an infinite sheet (2 sets)
and a sphere (2 sets) are plotted on Arrhenius diagrams
using analytical solutions for both geometries (complete
stepwise degassing data can be found in the Supplemen-
tary Files Table 1). Two important conclusions can be
drawn from Fig. 5. First, only the Arrhenius arrays
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Fig. 5. Arrhenius plots calculated for the fractional release data shown in the Supplementary Files Table 1. Each set of fractional release data
is plotted using analytical solutions for spherical and infinite sheet geometries. Fractional release data were obtained from the incremental
degassing of (A) an infinite sheet with Ea = 167.4 kJ/mole, (B) a sphere with Ea = 167.4 kJ/mole, (C) an infinite sheet with Ea = 104.6 kJ/mole,
(D) a sphere with Ea = 104.6 kJ/mole. Only the Arrhenius arrays plotted using the appropriate geometry are linear.
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plotted using the appropriate geometry are linear. The
fractional release data for the sphere yield downwardly
curved Arrhenius arrays when plotted using analytical
solutions for an infinite sheet. The fractional release data
for the infinite sheet yield upwardly curved Arrhenius ar-
rays when plotted using analytical solutions for a sphere.
The calculated Ea’s are relatively accurate at low F and
become increasingly erroneous when more gas is included
in the regression (Fig. 6). This can be understood by
inspecting a plot of F vs. Fo for a sphere and infinite
sheet (Fig. 7). At low F both geometries have a similar
slope but become increasingly divergent at moderate Fo.
The second important conclusion that can be drawn from
Fig. 5 is that because the Arrhenius arrays are not paral-
lel (i.e., they define different Ea’s), it is not possible to
model an infinite sheet as a sphere and vice versa by sim-
ply using an effective spherical equivalent radius. If it
were possible, the data would have the same Ea, but
Do/a2 would differ by the square of the spherical equiva-
lent radius.

To assess the magnitude of the error in Ea as a function
of crystal geometry and roundness, we used the LB code to
simulate diffusion from suites of 2D ovoidal and rectangu-
lar crystals with aspect ratios (e = a/b) ranging from 1 to 10.
The shorter dimension (2b) was fixed at 100 microns. Thus
the shortest distance from the center of each crystal to the
nearest edge (b) was 50 microns. We subjected each hypo-
thetical crystal to a typical 40Ar/39Ar heating schedule
(600 s at 500, 600, 700, . . ., 1200 �C). Diffusion was gov-
erned by the following Arrhenius relationship:



Fractional Loss

E a
 (k

J/
m

ol
)

0.00 0.25 0.50 0.75 1.00
163.2

167.4

171.6

175.8

Fig. 6. Plot of activation energy (Ea) as a function of the fraction
of gas included in the Arrhenius regression (F) for spherical and
infinite sheet geometries. The fractional release data were obtained
from the incremental degassing of an infinite sheet with
Ea = 167.4 kJ/mole. The Arrhenius array calculated using analyt-
ical solutions for a sphere (the wrong geometry) becomes increas-
ingly erroneous and curvilinear when more gas fractions are
included in the regression.

0.0 0.4 0.8 1.2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.2 0.6 1.0
Fo1/2

F

Infinite Sheet
Sphere

Fig. 7. Plot of fractional loss (F) as a function of the square root of
the Fourier number (Fo = Dt/a2) for an infinite sheet and a sphere.
The symbols represent the fractional loss that is calculated for
heating an e = 1 rectangle for 600 s at 900 �C (circles), 600 s at
1100 �C (squares), and 1000 years at 350 �C (diamonds) using
infinite sheet and spherical geometries. The apparent Fo’s obtained
assuming infinite sheet and spherical geometries are not identical
because geometry-specific Ea and ln(Do/a2) values calculated from
the incremental degassing of the e = 1 rectangle were used (i.e., D at
900 �C is different for spherical and infinite sheet geometries;
diffusion parameters are listed in Table 1). Depending on the nature
of the heating event, infinite sheet and spherical geometries predict
substantially different F. Small dots (blue – sphere; red – infinite
sheet) represent the cumulative Fo’s experienced by 100 discrete
production steps (evenly spaced) from the thermal history shown in
Fig. 12a and b. Early productions steps experience larger cumu-
lative Fo whereas later production steps experience smaller
cumulative Fo. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this
article.)
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lnðDÞ ¼ lnðDoÞ �
Ea

RT

� �
¼ �13:8 m2

s

� �
� 170 kJ=mole

RT

� �
:

ð13Þ

To compare the true Arrhenius relationship to those cal-
culated from the step-heating data, we normalized Eq. (13)
to the diffusive lengthscale (r) by setting r = b = 50 microns,
which yields

ln
D
r2

� �
¼ 6

s

� �
� 170 kJ=mole

RT

� �
: ð14Þ

We calculated apparent diffusion parameters for each
hypothetical crystal using equations for both infinite sheet
and spherical geometries. The results are summarized in
Fig. 8 and Table 1. All Ea and ln(Do/a2) regressions in-
cluded >95% of the total gas released, and therefore repre-
sent the maximum error in Ea for a given aspect ratio.
Conversely, ln(Do/a2) tends to become increasingly accurate
when more gas is included in the regression. Thus Ea’s are
relatively accurate at low F (Fig. 6) whereas ln(Do/a2) val-
ues are inaccurate and vice versa.

In Fig. 8A and B we show apparent Ea and ln(Do/a2)
values calculated for the ovoidal and rectangular shapes
assuming infinite sheet geometry. By inspection it is evident
that as crystals deviate from ideal infinite sheet geometry
(e =1), the Ea’s determined using fractional release data
increasingly underestimate the true Ea (170 kJ/mol), attain-
ing a maximum error of �5% for perfect squares and circles
(e = 1; i.e., an infinite cylinder). There is a noticeable offset
between ln(Do/a2) values obtained from the ovoidal and
rectangular suites at a given e value, where the ovoidal
shape is characterized by the larger of the two values. This
disparity reflects the fact that at a given temperature the
proportion of total gas lost from rectangular shapes is
inhibited relative to ovoidal shapes of equivalent aspect
ratios because the average radial distance to the edge
is greater. However, because the relative quantities of gas
lost in successive extractions appear to be quite similar,
both geometric suites yield equivalent Ea’s at a given aspect
ratio.

In Fig. 8C and D we show apparent Ea and ln(Do/a2)
values calculated for the ovoidal and rectangular shapes
assuming spherical geometry. By inspection it is evident
that as crystals deviate from ideal spherical geometry
(e = 1 in 3D), the Ea’s determined using fractional release
data increasingly overestimate the true Ea (170 kJ/mol),
attaining a maximum error of �6% for shapes with large as-
pect ratios (e > 10; i.e., a infinite sheet). At true Ea’s of 80,
120, 150, 200, and 250 kJ/mol, we observe maximum errors
in Ea of 8%, 10%, 9%, 8%, and 2%, respectively, for the
heating schedules used. Results vary by several percent
for different heating schedules. For example, cycled heating
drastically reduces the apparent error in Ea (see Fig. 5). The
largest disparity in calculated Ea (�10%) represents a rea-
sonable upper bound on the uncertainty that arises from
an inappropriate choice of geometry.

To summarize, diffusion parameters obtained from
Arrhenius plots calculated using analytical solutions for
simple geometries may be subtly but significantly incorrect.
All natural crystals should yield modestly curvilinear



Table 1
Summary of diffusion parameters calculated for spherical and infinite sheet geometires.

Shape e Infinite sheet Sphere

Ea (kJ/mol) ± 1r ln(Do/r2) ± 1r Ea (kJ/mol) ± 1r ln(Do/r2) ± 1r

Rectangles 1 160.5 ± 3.0 6.1 ± 0.2 173.0 ± 2.0 5.5 ± 0.2
2 163.2 ± 3.0 5.8 ± 0.2 174.5 ± 1.0 5.2 ± 0.2
5 165.0 ± 3.0 5.7 ± 0.2 176.0 ± 2.0 4.9 ± 0.2
7 167.0 ± 3.0 5.8 ± 0.2 177.5 ± 2.0 5.0 ± 0.2
10 167.0 ± 3.0 6.1 ± 0.1 178.0 ± 2.0 5.0 ± 0.1

Ovoids 1 162.0 ± 3.0 6.3 ± 0.2 174.0 ± 1.0 5.8 ± 0.2
2 163.5 ± 3.0 6.0 ± 0.2 174.5 ± 1.0 5.3 ± 0.2
5 166.0 ± 3.0 6.0 ± 0.2 177.0 ± 1.0 5.3 ± 0.2
7 166.0 ± 3.0 6.0 ± 0.1 177.0 ± 1.0 5.3 ± 0.1
10 167.0 ± 3.0 6.0 ± 0.2 178.5 ± 1.0 5.4 ± 0.2
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Fig. 8. Apparent diffusion parameters calculated for hypothetical rectangular (red) and ovoidal (blue) crystals with aspect ratios (e) ranging
from 1 to 10. The fractional loss data was generated using the lattice-Boltzmann diffusion model. Diffusion was governed by the Arrhenius
relationship presented in Eq. (13) and the true Ea and ln(Do/a2) are shown as dashed lines. Errors are calculated by a least square fit with an
Arrhenius relationship of the form D0 exp(�Ea/RT). (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Arrhenius arrays, where the magnitude of the effect depends
on (1) the deviation from an ideal geometry, (2) fractional
release included in the regression, and (3) the heating sche-
dule. Regressing a given set of fractional release data using
analytical solutions for an infinite sheet and a sphere con-
strains the minimum and maximum Ea, respectively. A rea-
sonable bound on the maximum intrinsic error in calculated
Ea that results from an inappropriate choice of diffusion
geometry (or failure to identify to temperature-independent
anisotropy, as these are mathematically equivalent) is
�10% for typical Ar and He Ea’s. These uncertainties
may be significant for modeling thermal histories and com-
paring diffusion parameters with those obtained from other
methods.
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6. OBTAINING ACCURATE THERMAL HISTORIES

FROM CRYSTALS HAVING GEOMETRIC AND/OR

DIFFUSIVE ANISOTROPY

6.1. The AND approach

In Section 5 we discussed the inherent uncertainty on
diffusion parameters calculated from fractional release data
following Fechtig and Kalbitzer (1966). These uncertainties
have been greatly reduced for select minerals that have been
characterized using a variety of methods and controlled
crystal geometries (e.g., Durango apatite; Farley, 2000).
However, even with knowledge of the kinetics that govern
diffusion, accurate thermal histories cannot be modeled
for crystals with complex geometries using analytical solu-
tions for simple geometries unless corrections are applied
to account for deviations from the ideal. These corrections
have typically taken the form of an effective, or spherical
equivalent, diffusion radius (reff). Meesters and Dunai
(2002) qualitatively addressed this problem with their eigen-
value model, and found that an accurate thermal history
could be obtained from a non-spherical crystal if it was
modeled as a sphere with an equivalent surface area to vol-
ume ratio (hereafter referred to as the SV approach). Wat-
son et al. (2010) addressed a specific form of non-spherical
geometry and derived an analytical solution to model diffu-
sion from finite cylinders having anisotropic diffusivity.
Gautheron and Tasson-Got (2010) developed a more gen-
eral approach to modeling complex crystals as spheres
based on the concept of the surface area weighted by the
relative magnitude of the diffusion coefficients normal to
the surface (the active radius model; hereafter referred to
as the AR approach). In the following section we discuss
the advantages and limitations of the SV and AR ap-
proaches and present a new method [Average Normalized
Distance (hereafter referred to as the AND approach)] that
offers greater accuracy over a wider range of shape and/or
diffusive anisotropy.

The physical basis for the SV approach (Meesters and
Dunai, 2002) can be understood with a simple mass balance
argument, in which the fractional loss is related to the flux
out of the surface bounding the diffusing object, given by

dF ¼ � 1

M0

I
S

D
@C
@n

dS ð15Þ

where S is the surface bounding the object, n is the direction
of the outward normal to S, and M0 is the initial concentra-
tion integrated over the volume of the object.

If we assume that the diffusive flux out of the surface is
homogeneous at any given time, then during an infinitesi-
mal time interval the loss becomes

dF � k
S
V
; ð16Þ

where k is a proportionality constant. However, the
assumption that the diffusive flux out of any unit surface
dS is equivalent is not valid for objects with large shape
anisotropy (x/y or x/z 6 0.1; Gautheron and Tasson-Got,
2010) and/or diffusion coefficient anisotropy (Dx/Dy or
Dx/Dz 6 0.01). For example, consider a hypothetical tetrag-
onal prism of dimensions 2x � 2y � 2z = 2mm � 2mm �
4mm. Regardless of Dx, Dy, and Dz, the surface area to vol-
ume ratio of the isotropic equivalent sphere calculated
using the SV approach is 2.5. If Dx = Dy = 0.5 Dz, then
the SV approach approximates diffusive loss poorly because
of the anisotropic diffusivity in the z direction.

Recently, Gautheron and Tasson-Got (2010) proposed a
more general model (the AR approach) to compute a spher-
ical equivalent radius that implicitly incorporates diffusive
anisotropy. Unlike the SV approach, which considers only
by the physical crystal boundaries, the AR approach effec-
tively rescales the crystal dimensions relative to a reference
diffusivity Da (the average diffusivity in their model). This
method relies upon the mathematical equivalency of
geometric and diffusive anisotropy discussed in Section 4.
Recall that a tetragonal prism of dimensions 2mm � 2mm

� 4mm and diffusivity Dx = Dy = 0.25 Dz is mathematically
equivalent to a tetragonal prism of dimensions 2mm �
2mm � 2mm and diffusivity Dx

* = Dy
* = Dz

* = Dx. The
AR approach effectively finds the radius of a sphere with
the same surface area to volume ratio as the mathematically
equivalent isotropic crystal described above. Thus the
integrand in Eq. (16) can more generally be replaced by

ðD � rCÞ � dS; ð17Þ

where a single underline refers to a vector and double
underlines to a second rank tensor (matrix). The tensor of
diffusivities D can be projected along the normal to the sur-
face element dS to obtain D0

D0 dS2 ¼ dST D dS; ð18Þ

where the superscript T refers to the transpose and dS2 is
the square of the surface area dS. Gautheron and Tassan-
Got normalized the diffusivity tensor D0 with the average
diffusivity Da to define the active surface element dS0, given
by

ðD0=DaÞ dS2 ¼ dS02: ð19Þ

In the notation of the AR model, the fractional loss out
of the diffusing body is given by

dF ðtÞ � � 1

M0

I
S

DarnCðxs; tÞdS0: ð20Þ

The equivalent radius for a sphere is such that the loss
out of the sphere (dFsp) approximates dF at all time. If we
assume that the concentration gradients are homogeneous
over the domain boundary, then

dF ðtÞ � � Da

V C0

rsCðtÞS0: ð21Þ

Similarly the loss out of the equivalent sphere with isotropic
diffusivity Da is

dF spðtÞ � �
Da

V spC0

rCspðtÞSsp; ð22Þ

where the subscript sp was used for the sphere. The active
radius is then obtained by matching the losses dF and dFsp,
which yields Rsp = 3V/S0. For isotropic diffusion, the active
surface reduces to the physical surface of the diffusing do-
main and the SV and AR methods are equivalent.



Fig. 9. Schematic illustration of the calculation of the normalized
distance d(r) in a tetragonal prism with pyramidal terminations.
The semi-axes of the ellipsoid centered at each point x in the crystal
are proportional to the tensor of diffusivity. The largest ellipsoid
centered on x that remains fully included into the crystal
boundaries provides a measure of d(r) at this point. The volumetric
average of d(r) yields the AND.
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The AR approach is most accurate (F within 5–10% at a
given Fo) when the average concentration gradient near the
surface matches that of the equivalent sphere (i.e., when the
distribution of the diffusing element with respect to the do-
main boundary is equivalent for the modeled sphere and
the actual physical domain). This condition is satisfied with-
in crystals having moderate geometric and/or diffusive
anisotropy, which can collectively be parameterized by
the following dimensionless numbers:

X1 ¼
y2

x2

Dx

Dy
ð23Þ

X2 ¼
y2

z2

Dz

Dy
ð24Þ

At X1 and X2 values greater than �0.01, the AR approach
becomes increasingly inaccurate (Gautheron and
Tasson-Got, 2010).

We developed a method to calculate a spherical-equiva-
lent correction that is based on the average normalized dis-
tance (AND) for diffusion. It is highly accurate (within
�1%) at X1 and X2 values >10�2 and better than 5% accu-
rate at X1 and X2 values as low as 10�5. The method can be
understood using the moment of inertia of an object as an
analogy. An object’s moment of inertia describes how it’s
mass is spatially distributed. Natural crystals and spheres
diffusive similarly when the distribution of concentration
with respect to the object’s boundaries are approximately
equivalent at all times. Defining the moment of inertia for
diffusion as

Ic ¼
Z

V
C0dðrÞ2dV ; ð25Þ

where d(r) is the diffusivity-normalized distance to the near-
est surface, given by

dðrÞ ¼ min
i

jx� xsji
Di=Dref

� �1=2

 !
; ð26Þ

where i is an index that runs over the Cartesian coordinates
(x, y, z) and x and xs refer to positions inside the domain
and on its surface, respectively. Dref is an arbitrary reference
diffusivity to which distance is normalized (e.g., the diffusiv-
ity in the slowest crystallographic direction). One’s choice
of Dref does not matter, but it affects the calculated radius
of the isotropic equivalent sphere.2 Thus d(r) is not truly
a distance, but rather the fastest way out of the domain,
or the direction with the greatest Fourier number (see
Fig. 9). In this respect we are again relying on the mathe-
matical equivalency of diffusive and geometric anisotropy.
The average normalized distance (AND) for diffusion is
therefore given by

AND ¼ 1

V

Z
V

C0 dðrÞdV : ð27Þ
2 In Eqs. (23) and (24), Dy is the reference diffusivity used to
calculate X1 and X2. One would calculate a different spherical
equivalent radius using the AR approach if diffusivity was cast in
terms of Dz.
For a sphere with a homogeneous initial concentration
distribution and isotropic diffusion, AND is 0.2594 times
the radius. Thus mass is distributed in a sphere such that
the average displacement of a particle exiting the domain
surface is �26% of the radius. The average, diffusivity-nor-
malized displacement of particles exiting any given geome-
try can be related to a sphere with the similar moment of
inertia for diffusion, the effective radius reff of which is
simply

reff ¼ AND=0:2594 ð28Þ

For crystals having temperature-independent anisot-
ropy, the ratio of Dref to Dx,y,z is fixed, and AND remains
constant at all T. For crystals having temperature-depen-
dent anisotropy, AND will vary with temperature accord-
ing to variations in the diffusivity tensor. AND must be
calculated as a function of temperature for samples of this
nature and can then be incorporated into finite-difference
methods as a temperature-dependent correction to the ref-
erence Arrhenius relationship (Dref(T)). Because the nor-
malized distance d(r) is independent of the concentration
distribution (i.e., it is the normalized distance irrespective
of initial location), zoned crystals can also be modeled with
AND. That being said, certain complexities intrinsic to
zoned samples (e.g., inward and outward diffusion toward
areas of lower concentration) cannot be reproduced using
an isotropic equivalent sphere with a uniform concentration
distribution.

Here we compare results obtained from the AR and
AND approaches to illustrate the fidelity of our method.
In the following comparisons, we have excluded the SV ap-
proach, which is at best as accurate as the AR approach (in
the case of isotropic diffusion). Fig. 10 is a plot of F vs. Fo



Fig. 10. Plot of F vs. Fo for a tetragonal prism with pyramidal
terminations and isotropic equivalent spheres determined using the
AND and AR approaches. The relative dimensions of the
tetragonal prism are 4 � 4 � 7. The relative height of the pyramidal
terminations is 2. Diffusion is isotropic. The AR and AND
approaches are accurate to better than 3% and 0.5% at all Fo,
respectively.
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for a tetragonal prism with pyramidal terminations3 and
the isotropic equivalent spheres determined using the
AND and AR approaches. In this example diffusivity in
the tetragonal prism with pyramidal terminations is isotro-
pic. The AR approach is accurate to better than 3% at all
Fo, while the AND approach is accurate to better than
0.5% at all Fo. The accuracy of the AND approach is more
apparent for crystals having greater diffusive or geometric
anisotropy. Fig. 11 illustrates the error in fractional loss
(DF) that results from using the AND and AR approaches
to model tetragonal prisms with a range of X1 and X2 val-
ues. To construct this figure, F was calculated for the AR
and AND approaches at Fo’s corresponding to true F of
0.5, 0.7, and 0.9, as constrained by the analytical solution
for diffusive loss from a tetragonal prism (see Appendix).
By inspections of Fig. 11 it is evident that both the AR
and AND methods are accurate to within 5% at F 6 0.70.
At higher F, the AR approach is inaccurate by as much
as 15%. The AND approach is accurate to within �5% at
all F for X1 and X2 values between 10�5 and 1.

6.2. Software to calculate AND

AND can be calculated analytically for simple geome-
tries such as tetragonal prisms of dimensions 2x � 2y � 2z

and diffusivity Dx, Dy, Dz (see Appendix). For more com-
plex geometries, we developed a numerical model that runs
on any platform (e.g., Windows, Mac, Unix) with a C++
compiler. In this program, the 3D shape is generated from
a 3D matrix written in ASCII format, where the scalar va-
lue is set to 1 inside the domain and 0 outside. The model
3 The tetragonal prism with pyramidal terminations is shown in
Fig. 2. The relative dimensions of the tetragonal prism are
4 � 4 � 7. The relative height of the pyramidal terminations is 2.
computes the normalized radius xi/(Di/Dref)
1/2 of the largest

ellipsoid centered on each point inside the diffusing domain
that remains fully contained within the boundaries of the
domain (see Fig. 9). AND is calculated as the volume aver-
age of these normalized radii. This code is available for
download from http://huber.eas.gatech.edu/diffusion.html.
The website includes tutorials for generating matrices in
ASCII format using MATLAB.

7. USING SAMPLE SPECIFIC DIFFUSION

PARAMETERS

In 40Ar/39Ar and 4He/3He thermochronometry it is com-
mon to determine diffusion kinetics for each sample used
for thermal modeling. Lovera et al. (1991) and Meesters
and Dunai (2002) noted that one’s choice of diffusion geom-
etry negligibly affects modeled thermal histories provided
that the same geometry is used to calculate diffusion param-
eters and forward model potential t–T paths. We conducted
a number of modeling exercises to evaluate this hypothesis,
and found it to be true for samples that experienced mono-
tonic cooling histories, but not for those subjected to epi-
sodic loss events.

7.1. Monotonic cooling histories

To compare modeled thermal histories calculated using
infinite sheet and spherical geometries, we generated two
“target age spectra” by subjecting a hypothetical infinite
sheet to cooling paths that traverse the argon partial reten-
tion zone (ArPRZ) over 10 and 100 Ma. We used a finite
difference method to model changes in 40Ar* concentration
through each t–T history, where the mass diffusion equa-
tion with a production term was solved implicitly using a
Crank–Nicholson scheme. The boundary conditions were
zero concentration at the grain edge (C = 0 @ r = R) and
zero flux at the center node (dC/dr = 0 @ r = 0). After solv-
ing for the 40Ar* concentration gradient, a uniform 39Ar
concentration was imparted to simulate 39Ar production
(i.e., by neutron irradiation of K) prior to laboratory anal-
ysis. The 40Ar* and 39Ar concentration profiles were then
degassed incrementally to yield the target age spectra. We
calculated diffusion parameters for infinite sheet and spher-
ical geometries from the incremental release of 39Ar. In the
case of the infinite sheet, we recover the input diffusion
parameters as that geometry was used to generate the target
age spectrum (Ea = 169.5 kJ/mole, ln(Do/a2) = 5.92). In the
case of the sphere we obtain erroneous diffusion parameters
reflecting our inappropriate choice of diffusion geometry
(Ea = 178.6 kJ/mole, ln(Do/a2)=4.93). We then forward
modeled 1000 monotonic cooling histories for both geome-
tries using the geometry-specific diffusion parameters. The
resulting model age spectra were compared to the target
age spectra and a fit statistic [the mean square of weighted
deviates (MSWD; McIntyre et al., 1966)] was calculated for
each. Those t–T paths that yielded age spectra that best fit
the target spectrum are shown in red in Fig. 12
(MSWD < 3).

By inspection of Fig. 12 it is apparent that both infinite
sheet and spherical diffusion geometries predict similar

http://huber.eas.gatech.edu/diffusion.html
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Fig. 11. Comparison of the error in fractional loss (DF) at true F of 0.5 (A and B), 0.7 (C and D), and 0.9 (E and F) that results from using the
AND and AR approaches to model tetragonal prisms with a range of X1 and X2 values (see text for calculation).
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cooling histories for a given target age spectrum. For exam-
ple, in Fig. 12A and B we show that both geometries predict
t–T paths that traverse the ArPRZ from 250 to 200 �C over
a 4 Ma interval ending 3 Ma ago. These models support
previous assertions [e.g., Lovera et al. (1991) and Meesters
and Dunai (2002)] that one’s choice of diffusion geometry in
a 40Ar/39Ar or 4He/3He experiment will negligibly influence
a calculated thermal history for samples that have cooled
monotonically through the PRZ. A logical explanation
for this observation is given in Section 7.3.
7.2. Episodic loss events

Extraterrestrial materials (e.g., meteorites and lunar
rocks) commonly yield discordant 40Ar/39Ar age spectra
due to episodic 40Ar loss associated with impact events.
To assess the potential error in calculated t–T conditions
associated with a given fractional loss (F) that would result
from an inappropriate choice of geometry, we modeled a
hypothetical infinite tetragonal prism as both an infinite
sheet and a sphere and compared the results. For the
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infinite tetragonal prism, we computed F as a function of T

and t using our LB code and the Arrhenius relationship in
Eq. (13). To compute F as a function of T and t for the infi-
nite sheet and sphere, we used the geometry-specific Ea and
ln(Do/a2) values calculated from the incremental degassing
of the e = 1 rectangle (listed in Table 1) and solved the ana-
lytical solutions for diffusive loss from an infinite sheet and
sphere (see McDougall and Harrison (1999) and references
therein). The results are summarized in Fig. 13.

Infinite sheet and spherical diffusion geometries predict
significantly different fractional losses for a given t–T pulse,
where the infinite sheet is characterized by the larger F. This
disparity in F may exceed 0.50 under some t–T conditions,
which depend in detail on the contrasting Arrhenius rela-
tionships and the duration and temperature of the thermal
pulse. By inspection of Fig. 13D and F it is apparent that a
sphere more accurately predicts the t–T conditions associ-
ated with a given F for the infinite square prism than the
infinite sheet does. At a given F and t, infinite sheet and
spherical geometries differ by 50 �C or more and provide
constraints on the maximum and minimum allowable T,
respectively.

7.3. Discussion

The modeling exercises outlined above raise an impor-
tant question: Why does one’s choice of diffusion geometry
affect t–T conditions predicted for episodic reheating
events, but negligibly influence predicted slow cooling his-
tories? To answer this question we refer to Fig. 7, which de-
picts the fractional loss (F) as a function of Fourier number
(Fo = Dt/a2) for an infinite sheet and a sphere. Depending
on the duration and temperature of a given episodic heating
event, infinite sheet and spherical geometries may predict
similar fractional losses (e.g., circles and squares in Fig. 7)
or vastly different fractional losses (e.g., diamonds in
Fig. 7). Note that the apparent Fo experienced by the infi-
nite sheet and sphere for a given episodic heating event
are not identical because different diffusion parameters are
used for the two geometries (see Section 7.2). Thus the error
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Fig. 13. Comparison of t–T solutions to F calculated for diffusive loss from an e = 1 rectangle held at a constant temperature (T) for a
specified duration (t) (see text for calculation). Results are modeled using (A) the LB diffusion code, (C) infinite sheet geometry, and (E)
spherical geometry. For (C) and (E) we used the geometry-specific Ea and ln(Do/a2) values calculated from the incremental degassing of the
e = 1 rectangle (Table 1) and solved the analytical solutions for fractional loss as a function of Fourier number (Fo = Dt/a2). In panels (B),
(D), and (F) we compare the differences between these models. A sphere more accurately predicts the t–T conditions associated with a given F

for the infinite tetragonal prism (e = 1 rectangle) than the infinite sheet does.
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in t–T conditions associated with a given F depends in de-
tail on the Ea and Do of the sample and the nature of the
heating event.

Unlike some episodic heating events, both infinite sheet
and spherical geometries predict similar thermal histories
for slowly cooled samples. Consider a hypothetical potas-
sium-bearing sample in which the production of radiogenic
40Ar (40Ar*) is discretized into equally spaced time steps.
During cooling, the diffusive loss of each discrete increment
of 40Ar*produced can be modeled independently and subse-
quently summed with the other steps to determine the con-
centration of the bulk crystal at any time. The fractional
loss of a given production step depends on the cumulative
Fo (i.e., the thermal history) experienced by that discrete
quantity of radiogenic Ar (see small dots in Fig. 7). Early
production steps experience larger cumulative Fo whereas
later production steps experience smaller cumulative Fo.
An observed age spectrum reflects the aggregate of the con-
centration distributions (i.e., the fractional loss) of each dis-
crete production step. Both geometries predict similar F for
many of the production steps and on average the difference
in F is much smaller than that associated with some epi-
sodic loss events. Furthermore, differences in the morphol-
ogy of infinite sheet and spherical diffusive loss profiles
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(e.g., McDougall and Harrison, 1999) offset differences in
the calculated fractional loss (i.e., 20% loss from an infinite
sheet yields a similar age spectrum to 16% loss from a
sphere). As such, one’s choice of diffusion geometry appears
to be fairly inconsequential for slow cooling thermal histo-
ries (Lovera et al., 1991; Meesters and Dunai, 2002).
8. CONCLUSIONS

(1) We have developed a code based on the lattice Boltz-
mann (LB) method to model diffusion from a variety
of complex 2D and 3D geometries with isotropic,
temperature-independent anisotropic, and tempera-
ture-dependent anisotropic diffusivity. Our model
thereby greatly surpasses the capabilities of widely
used analytical solutions requiring simplifying
assumptions. We hope in the near future to make a
user-friendly version of this code freely available as
a software package with an extensive graphical user
interface. Further development, documentation, sup-
port, and dissemination of the code is envisaged with
(pending) funding support. In the interim, interested
users can contact us to obtain a copy of the existing
codes and additional information can be found at
http://huber.eas.gatech.edu/diffusion.html.

(2) Diffusion parameters derived from degassing experi-
ments relating fractional loss to diffusivity using ana-
lytical solutions for simple geometries, such as an
infinite cylinder, infinite sheet, sphere, or cube, may
be subtly but significantly incorrect. Natural crystals
with complex topologies should yield modestly curvi-
linear Arrhenius arrays, where the magnitude of the
effect depends on (1) the deviation from an ideal
geometry, (2) the fractional release included in the
regression, and (3) the heating schedule. A reason-
able upper bound on the intrinsic error in calculated
Ea that will result from an inappropriate choice of
diffusion geometry appears to be �10%.

(3) Natural crystals that are devoid of microstructure
can be relatively accurately modeled as spheres if
effective diffusion radii (reff) are calculated using sim-
ple scaling relationships that relate shape and/or dif-
fusive anisotropy to the average normalized distance
(AND) for diffusion. The AND approach can be
incorporated into analytical and finite-difference pro-
duction-diffusion codes to obtain accurate thermal
histories from geometrically complex crystals having
temperature-independent and temperature-depen-
dent anisotropy. Crystals that have complex zoning
profiles or microstructural features like fast diffusion
pathways, exsolution lamellae, or diffusive sinks
require more sophisticated models and cannot be
treated as spheres.

(4) One’s choice of diffusion geometry in a 40Ar/39Ar or
4He/3He experiment will negligibly influence a calcu-
lated thermal history for samples that have cooled
monotonically through the partial retention zone,
provided that the same geometry is used to calculate
diffusion parameters and forward model potential
t–T paths. However, one’s choice of diffusion geom-
etry can influence calculated t–T constraints on epi-
sodic loss events (e.g., impact events on meteorites
and lunar rocks) and burial heating conditions.
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APPENDIX

An analytical approach to finding AND for a tetragonal

prism

The analytical solution for diffusive loss from a tetrago-
nal prism of dimension 2a � 2b � 2c in the x, y, and z direc-
tions, respectively, can be obtained by taking the Fourier
transform of the 3D diffusion equation for both time and
spatial variables. In the case of a tetragonal prism with a
homogeneous initial concentration C0, we obtain

Cðx; tÞ¼ 64C0

p3

X1
l;m;n¼0

ð�1Þlþmþn

ð2lþ1Þð2mþ1Þð2nþ1Þ
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ð2lþ1Þpx

2a

� �
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�cos
ð2nþ1Þpz

2c

� �
exp �p2
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�exp �p2
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exp �p2
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c2
t

 !
:

ðA1Þ

The fractional loss from a tetragonal prism is given by

F ðtÞ ¼ 1� 1

M0

Z t

0

Z
V

@Cðx; tÞ
@t

dV
� �

dt ðA2Þ

where V is the volume of the tetragonal prism (V = 8abc)
and M0 = C0

* V. After some algebra, we obtain

F ¼ 1� 8

p2

� �3 X
l;m;n¼0

1 1

ð2lþ 1Þ2ð2mþ 1Þ2ð2nþ 1Þ2
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� exp � p2
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e2
2

Dz
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ðA3Þ

where e1 = a/b and e2 = c/b. The infinite sum in Eq. (A3)
converges rapidly, and we found that truncating over values
of l, m, n > 5 is sufficient for obtaining accurate results. We
define the exponents on the first and third exponential
terms to be X1 and X2, respectively.

http://huber.eas.gatech.edu/diffusion.html
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The fractional loss out of a body with an arbitrary shape
depends on the average effective distance that atoms/mole-
cules must travel to reach the nearest surface/boundary. We
use the definition of the normalized distance at every posi-
tion in the prism x, d(x)

dðxÞ ¼
min

s

x�xs

D1=2

� �
D1=2

ref

ðA4Þ

where minS is the minimum taken over all the points
belonging to the surface S, x and xS are the coordinates
of x V and of the surface S, respectively, and D is the vec-
tor of diffusivities, given by

D ¼ ðDx;Dy ;DzÞ: ðA5Þ

We set arbitrarily the reference diffusivity Dref = Dy. The
average normalized distance is then

AND �
Z

V
min

S

x� xS

ðD=DyÞ1=2

 !
dV ðA6Þ

We can divide a tetragonal prism shape with dimensions
2a � 2b � 2c centered at the origin into 8 equal pieces (we
will treat the piece in the quadrant x P 0, y P 0 and
z P 0, see Fig. A1). The average normalized distance for
this quadrant becomes

AND � 8

V

Z a

0

Z b

0

Z c

0

min
a� xffiffiffiffi

Dx
Dy

q ; b� y;
c� zffiffiffiffi
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q
0
B@

1
CAdxdydz

ðA7Þ

To compute this integral, we must divide the volume
0 6 x 6 a, 0 6 y 6 b, 0 6 z 6 c into three non-overlapping
volumes, given by

V xdefined as min
a� xffiffiffiffi

Dx
Dy

q ; b� y;
c� zffiffiffiffi

Dz
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q
0
B@

1
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b
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Vy

Vx

Vz

θyx

θxz

θyz

Fig. A1. Schematic depiction the division of a quadrant of a
tetragonal prism into Vx, Vy, and Vz. Volume Vx represents the
spatial field from which all atoms/molecules will exit the body
through the surface with normal along the x-direction.
V ydefined as min
a� xffiffiffiffi

Dx
Dy
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V zdefined as min
a� xffiffiffiffi
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Fig. A1 schematically depicts the division of the quad-
rant into Vx, Vy, and Vz. These volumes are analogous to
river drainage basins divided by ridgelines. For example,
volume Vx represents the spatial field from which all
atoms/molecules will exit the body through the surface with
normal along the x-direction. The boundaries between Vx,
Vy, and Vz (our ridgelines or drainage divides) depend
only on X1 and X2 and are obtained from Eqs. (A8)–
(A10). The angle between the boundary of volume Vi and
the normal (along the i-direction) in the plane i–j (see
Fig. A1) is given by

hij ¼ atan

ffiffiffiffiffi
Dj

Di

r� �
ðA11Þ

where i and j = x, y, and z. Thus six angles describe the vol-
umes. After integrating Eq. (A7) to find the minimum nor-
malized distance to the surface of the object for Vx, Vy, and
Vz and summing the three contributions, we obtain
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The AND value is function of our reference lengthscale b.
Thus the effective radius of an equivalent isotropic

sphere is given by

reff ðX1;X2Þ ¼
AND

0:2594
: ðA13Þ
APPENDIX A. SUPPLEMENTARY DATA

Supplementary data associated with this article can be
found, in the online version, at doi:10.1016/j.gca.2011.
01.039.

http://dx.doi.org/10.1016/j.gca.2011.01.039
http://dx.doi.org/10.1016/j.gca.2011.01.039
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