
A SIMPLE ALGORITHM TO ENFORCE DIRICHLET

BOUNDARY CONDITIONS IN COMPLEX GEOMETRIES

CHRISTIAN HUBER* and JOSEF DUFEK†

School of Earth and Atmospheric Sciences

Georgia Institute of Technology

311 Ferst Drive, Atlanta GA 30332, USA
*christian.huber@eas.gatech.edu

†josef.dufek@eas.gatech.edu

BASTIEN CHOPARD

Computer Science Department, University of Geneva

CUI, 7 Route de Drize, 1227 Carouge, Switzerland

Bastien.Chopard@unige.ch

Received 10 December 2010

Accepted 22 August 2011

We present a new algorithm to implement Dirichlet boundary conditions for diffusive processes

in arbitrarily complex geometries. In this approach, the boundary conditions around the dif-

fusing object is replaced by the fictitious phase transition of a pure substance where the energy

cost of the phase transition largely overwhelms the amount of energy stored in the system. The

computing cost of this treatment of the boundary condition is independent of the topology of

the boundary. Moreover, the implementation of this new approach is straightforward and

follows naturally from enthalpy-based numerical methods. This algorithm is compatible with a

wide variety of discretization methods, finite differences, finite volume, lattice Boltzmann

methods and finite elements, to cite a few. We show, here, using both lattice Boltzmann and

finite-volume methods that our model is in excellent agreement with analytical solutions for

high symmetry geometries. We also illustrate the advantages of the algorithm to handle more

complex geometries.
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1. Introduction

Diffusion is an important process for chemical and heat transport. Both natural

and engineering systems where diffusive processes occur can have a complex

boundary topology. Enforcing boundary conditions (BC) (on flux or composition/

temperature) on such complex boundaries requires an intensive numerical treat-

ment where the diffusive flux out of the domain (tangential and normal to the

boundary) has to be computed.1,2 Ghost computational cells surrounding the

International Journal of Modern Physics C

Vol. 22, No. 10 (2011) 1093�1105

#.c World Scientific Publishing Company

DOI: 10.1142/S0129183111016774

1093

http://dx.doi.org/10.1142/S0129183111016774


domain are generally introduced and the BC is enforced by using the desired con-

straint at the boundary (fixed concentration, fixed flux) and interpolating the scalar

field values (for the diffusing field) around the ghost cells. In that respect, the

equations solved for ghost cells are different from thenodes in thediffusing domain and

can vary from a ghost cell to another depending on the topology of the boundary.

In this study, we focus on Dirichlet BCs (imposed composition/temperature) for

the diffusion equation. We propose a model based on the enthalpy method, where we

replace the BCs around the diffusing body with a fictitious phase transition. During

the phase transition of pure substances, the temperature at the boundary is fixed

and energy flux is partitioned into latent heat. This process provides the conceptual

formulation for a general BC that fixes the value at an arbitrarily complex surface.

By setting the latent heat associated with the phase transition to arbitrarily large

values (compared to the \energy in the system"), the boundary between the two

phases of the pure substance is fixed spatially and the phase transition will not be

complete. This strategy allows us to replace the implementation of the Dirichlet BC

with the simple calculation of a bulk property, the fictitious enthalpy, and the

addition of a source/sink term defined in similar way at each node of the domain. In

our model, the ghost cells surrounding the diffusing domain, where the diffusive flux

is absorbed into a latent heat sink, behave identically to cells in the diffusing

domain, and, therefore, do not require a special treatment.

In the next section, we describe in more detail the physical model (diffusion

equation) and the enthalpy approach to the imposition of Dirichlet BCs. We then

follow with a short description of two numerical methods we use to test our model,

namely a LB and a finite-volume (FV) method. In the next section, we test the

model against analytical solutions in simple geometries, such as diffusion out of an

infinite slab or cylinder. We show an application which highlights the efficiency of

our method to deal with a complex topology and which does not require any

additional numerical treatment.

2. Mathematical Model

In this study, we focus on the two-dimensional (2D) or three-dimensional (3D)

diffusion equation with a fixed temperature or concentration BC. Mass or energy

conservation (we will use the latter one) in the absence of advection and phase

change gives

@T

@t
¼ r � ð� � rTÞ; ð1Þ

where � is the thermal diffusivity. Similarly, for the mass conservation of a chemical

species C ,

@C

@t
¼ r � ðD � rC Þ; ð2Þ

where D is the molecular diffusivity of C .
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The BC for the present case is

TðxÞ ¼ Tb or C ðxÞ ¼ Cb x 2 �V ; ð3Þ
where �V is the arbitrarily complex boundary topology of the object. And we will

assume the following initial condition

TðxÞ ¼ T0 or CðxÞ ¼ C0 x 2 V at t ¼ 0: ð4Þ

We emphasize that the initial conditions are not required to be homogeneous and

that T0 ¼ T0ðxÞ without any loss of generality for the method presented here.

Using the equivalent formalism of Green’s functions to solve for the 3D diffusion

equation in a body of volume V with boundary S with initial concentration Tðx; 0Þ
and fixed concentration Tb imposed on S,

Tðx; tÞ ¼
Z
V

Gðx; t j x0; 0ÞdV0 � �

Z t

0

dt0
Z
S

dS0Tbðx0; tÞ @

@n0 Gðx; t j x0; t0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
boundary condition

; ð5Þ

the role of the topology of the surface of the diffusing body on the solution (ana-

lytical or numerical) becomes more apparent. In Eq. (5), G is the Green’s function

for the diffusion equation that satisfies the BC (here fixed concentration) on S . The

second integral of Eq. (5) highlights the complexity of solving a simple diffusion

equation in bodies with arbitrary geometries, as the shape of the diffusing object

influences the Green’s function and its gradient normal to the surface S .

For simplicity, the following discussion focuses on heat diffusion, but the same

approach applies to chemical diffusion as discussed below.

As illustrated in Fig. 1(a), let us consider a computational domain V , containing

a substance S subject to an imposed temperature Tb on @V , the boundary of V . Let

us immerse V in a bounding box B ¼ V [ �V , with periodic boundary condition, as

shown in Fig. 1(b). The problem of solving the heat equation on V with Dirichlet

BC on @V can be transformed into a problem of solving the heat equation on B with

the same pure substance S, but assuming that S can be in two possible phases, say

solid on �V and liquid on V .

To describe these two phases, we introduce a new variable 0 � �ðx; tÞ � 1, the

melt fraction. When � ¼ 1 the substance is entirely liquid, and when � ¼ 0, it is

entirely solid.

Initially we will assume that in �V , the substance is in the solid state, � ¼ 0, at a

melting temperature Tm which is chosen as Tm ¼ Tb. In V , we assume that S is at a

higher temperature T0 > Tb, in a liquid phase with � ¼ 1.

We know from thermodynamics that, due to the latent heat, the temperature of

S is fixed to Tb at any point x where there is a mix of liquid and solid phases, i.e.

where 0 < � < 1. Therefore, if the points x 2 @V are in such a state during all the

heat transfer process, the interface between V and �V will act as a Dirichlet BC. If

the Stefan number S ¼ cðTm � T0Þ=L is chosen small enough, the time needed to
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fully solidify gridpoints in V or fully melt the gridpoints in �V can be made arbi-

trarily lengthened and the simulated Dirichlet conditions will hold for the entire

computation.

A thermal, two-phase system can be described by the enthalpy H ¼ cT þ L�,

where c is the specific heat and L the latent heat. The heat equation is then

modified to

@H

@t
¼ rð�crTÞ or

@T

@t
þ L

c

@�

@t
¼ rð�rTÞ; ð6Þ

indicating that the heat flux JQ ¼ ��rT is responsible for the variation of H .

The method we propose to implement a Dirichlet BC using a two-phase sub-

stance results from the decomposition in two steps of the change of enthalpy over a

time �t. First we assume that the temperature changes due to both the heat flux

and the variation of the melt fraction �. Second, the resulting departure of T from

the fixed temperature Tb causes a variation of the melt fraction to readjust to the

correct heat distribution.

The first step is a simple time discretization of Eq. (6), where the melt fraction

appears as a source term

Tðx; t þ�tÞ ¼ Tðx; tÞ þ�trð�rTÞ � L

c
ð�ðx; tÞ � �ðx; t ��tÞÞ: ð7Þ

The second step implements the fact that the heat cðT � TbÞ that has been incor-

rectly stored as specific heat is now transformed into latent heat by changing the

V

C0

δV where
C = Cb

Real system

periodic

(a)

V

C0

Cb = Cm

Model

periodic

periodic

periodic periodic

(b)

Fig. 1. Illustration of the enthalpy-based method to implement Dirichlet BCs on arbitrary geometries.

The computation of the BCs on the surface of the diffusing object �V is replaced by the calculation of a

phase transition of a pure substance. In this method, the object V and its surroundings are modeled as

two different phases of the same pure substance and the latent heat is set such that the phase transition

does not progress and remains fixed spatially. (a) Real system. (b) Model.
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melt fraction by an amount L�� ¼ Lð�ðt þ 1Þ � �ðtÞÞ

�ðx; tþ�tÞ ¼

0 if �ðx; tÞ þ c

L
ðTðx; tþ�tÞ �TbÞ< 0;

1 if �ðx; tÞ þ c

L
ðTðx; tþ�tÞ �TbÞ> 1;

�ðx; tÞ þ c

L
ðTðx; tþ�tÞ �TbÞ otherwise:

8>>>>><
>>>>>:

ð8Þ
This variation of � will then readjust the temperature at the next iteration, thanks

to the source term in Eq. (7).

Note that the above method can be applied identically to chemical diffusion; then

the fictitious enthalpy function becomes

Hðx; tÞ ¼ cCðx; tÞ þ L�ðx; tÞ; ð9Þ
where c is a physically meaningless equivalent of the specific heat for concentration

that allows us to set up a modified Stefan number S ¼ cðC0 � CmÞ=L � 1. In this

case, the equivalent of the melting temperature Cm is the fixed concentration at the

boundary �V , i.e. Cb ¼ Cm.

The enthalpy approach discussed here can be applied to any type of diffusion

equation solver, as proposed in the next section.

3. Numerical Models

3.1. Lattice Boltzmann model

In this section, we explain how the two-phase method presented in the previous

section can be implemented in a LB framework. For an in-depth description of LB

methods, the reader is referred to Refs. 3�7. The implementation we propose here is

similar to the enthalpy method presented in Refs. 8 and 9, where LB schemes are

used to describe the propagation of a melting front. Other methods of phase change

using a phase-field equation have been successfully applied to solidification and

crystal growth.10

Following the enthalpy method, an additional scalar field � is introduced on each

lattice node, from which the local enthalpy is defined as Hðx; tÞ ¼ cTðx; tÞþ
L�ðx; t � 1Þ. Following Eq. (7), the standard LB model for diffusion3,11,12 can be

modified to include a source term

fiðxþ ei; t þ 1Þ ¼ fiðx; tÞ �
1

�h
fiðx; tÞ � f eqi ðx; tÞð Þ � wi

L

c
�ðx; tÞ � �ðx; t � 1Þð Þ;

ð10Þ
where the melt fraction � evolves according to Eq. (8).

In Eq. (10), the temperature is calculated from the sum of the particle distri-

bution functions Tðx; tÞ ¼ P
i fiðx; tÞ. The quantities wi are the lattice weights, c 2

s

the lattice sound speed and �h is the relaxation time that relates to the diffusivity
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as � ¼ c 2
s ð�h � 1=2Þ. The unit vectors ei correspond to the lattice directions and

f eqi ¼ wiT are the so-called local equilibrium distributions.

In the Appendix, it is shown that this LB enthalpy method reduces to a very

simple numerical scheme where, on �V , the post-collision local equilibrium distri-

butions are redefined according to Tb, without however modifying the post-collision

non-equilibrium distribution. As a result, �ðxÞ can be considered as a static flag

indicating whether a point x is in V or in �V .

3.2. Finite-volume model

We implement a standard FV approach to discretize the time-dependent diffusion

equation with source term (latent heat or fictitious concentration source).13 To solve

for the diffusion equation in the two-dimensional domain we implement an iterative

solution procedure [alternating directions implicit (ADI)]. A predictor-corrector

method was used to compute the partitioning of the energy into sensible and latent

heat during the phase change process.14 The procedure used here was modified from

the approach of Dufek and Bergantz.15

4. Results

In this section, we use analytical solutions (approximations to the infinite series

solutions) for the diffusive loss from an infinite plane sheet (slab) and infinite

cylinder. The outside of the cylinder or sheet is assumed to be a perfect absorbent of

heat/mass and remains at a fixed temperature, composition throughout the diffu-

sion process. In all calculations, the Stefan number (the efficiency of the method to

absorb the flux out of the diffusing body) was set to 10�8. We chose to compare the

results obtained with both numerical method to the fractional loss from these simple

geometries as it provides a good test to validate the time, and implicitly, the spatial

dependence of our modeling results.

The fraction of heat/mass lost by diffusion for an initially homogeneous infinite

plane sheet with fixed boundary temperature/concentration (here assumed to be 0

for simplicity) is given by16

f ’
2ffiffiffi
�

p Dt

r2

� �
1=2

0 � f � 0:6;

1� 8

�2
exp � �2Dt

4r2

� �
0:45 � f � 1;

8>>><
>>>:

ð11Þ

where r is the half-width of the plane sheet (infinite slab). Similarly, the fraction loss

by diffusion for an initially homogeneous infinite cylinder of radius r is given by16

f ’
4ffiffiffi
�

p Dt

r2

� �
1=2

� Dt

r2
0 � f � 0:6;

1� 9

13
exp � 5:78Dt

r2

� �
0:6 � f � 1:

8>>><
>>>:

ð12Þ
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Starting with LB method, we first compare the analytical solution for the

fractional loss by an infinite slab [Eq. (11)] with the results obtained from our

boundary condition model. Figure 2 shows the time evolution of the fraction of

heat/concentration lost by the sheet with the two asymptotes of Eq. (11). The

agreement is excellent for both numerical methods, even if the resolution here is

fairly small, the half-width of the slab is discretized over 25 nodes only.

Our boundary condition model is also tested against analytical solutions for an

infinite cylinder of radius r. The results for the LB calculations are shown in the left

panel of Fig. 3 together with the analytical solutions of Eq. (12). For comparison,

the results obtained with the FV approach are shown in the right panel.
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Fig. 3. Comparison between the analytical solution and the LB (left panel) and FV (right panel)

numerical models for the diffusive flux out of an infinite cylinder of radius r. The diffusive loss is shown in

terms of the initial fraction of heat or chemical component remaining in the slab. Time is made dimen-

sionless using the Fourier number F ¼ Dt=r2.
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Fig. 2. Comparison between the analytical solution and the numerical model for the diffusive flux out of

an infinite slab of thickness r. The diffusive loss is shown in terms of the initial fraction of heat or chemical

component remaining in the slab. Time is made dimensionless using the Fourier number F ¼ Dt=r2. The

left panel shows the results we obtain with the LB model and the right panel with the FV model.
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It is noteworthy to mention that the spatial discretization of the curvature of the

cylinder is done with steps, i.e. on a uniform grid G with no interpolation between

nodes for the position of the boundary. More precisely, x 2 G is a part of the

cylinder if and only if jx� cj2 < r2, where c 2 G is the center of the cylinder.

Although the radius is only r ¼ 25 nodes, the results obtained with both

numerical methods ��� the LB and the FV method ��� are in excellent agreement

with the theory. We show below that the accuracy is actually second order in the

grid spacing. This might be surprising as the discretization procedure to resolve the

cylinder shape is manifestly first order. However, if one considers that the effective

location of the boundary is off-lattice and precisely on the circle of radius r, then the

accuracy is second order.

To test the order of accuracy of the method (for the LB algorithm) we compare

the diffusive loss outside of the infinite cylinder against a more accurate approxi-

mation of the analytical solution17

F ’ 4ffiffiffi
�

p Dt

r2

� �
1=2

� Dt

r2
� 1

3
ffiffiffi
�

p Dt

r2

� �
3=2

� 0:244122
Dt

r2

� �
2

0 � f � 0:78; ð13Þ

for different resolution R. The resolution R is simply defined here to be the ratio of

the size of the radius of the cylinder in number of lattice nodes (>25) to the radius in

a reference run (25 nodes). The error in the prediction of the cumulative diffusive

flux out of the cylinder is defined as

�F ¼ 1

N

XN
i¼1

jFan;i � Fcalc;i j
Fan;i

; ð14Þ

where N is the number of timesteps required to reach F ¼ 0:78 (we found that most

of the error accumulates before 60�80% loss). Fan;i and Fcalc;i are respectively the

cumulative fractional losses at timestep i for the analytical solution [Eq. (13)] and

the numerical calculations with the LB model. Figure 4 shows that the relationship

between the accuracy of the method and the resolution used is second order. The

arbitrary position of the boundary of the cylinder with respect to the square lattice,

i.e. every node outside of a radius of 25, 50, 75, and 100 nodes was set to be outside

the diffusing body, is usually typical of first-order method. This suggests that the

method is more accurate than expected, at least for the case of a cylinder. Future

work will be required to characterize the order of this new boundary condition

approach.

5. Discussion

The advantages of our algorithm to implement Dirichlet type BCs stems from its

simplicity and ease of implementation. It is based on the replacement of the intense

node-specific treatment required to enforce these BCs, especially on complex geo-

metries, with a generic model of phase transition that applies identically to every

node of the computational domain, boundary or not. Our model, however, requires
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the presence of additional nodes around the object that are treated as the other

phase of the pure substance. As such they act as a perfectly efficient sponge, or, as

an infinite reservoir for diffusive fluxes directed respectively out or into the object.

Two additional scalar fields are required (the fictitious enthalpy and solid fraction)

at each node of the computational domain. However, we show a way to circumvent

this problem for the LB model in the Appendix. We show that the boundary con-

dition can be enforced with a modified collision and does not require these additional

scalar fields. In that case, the only additional computational cost of the model is to

expand the size of the computational domain by a few nodes outside of the diffusing

domain (ghost cells). The additional computing cost, in 2D, is about k � P=ðnx nyÞ,
where k is the width of the latent heat buffer zone around the object in number of

grid nodes (about two nodes for example), P is the perimeter of the object and nx,

ny the number of nodes in the diffusing domain. The periodic BCs on cells at the

edges of the enlarged domain can be treated easily. Time-dependent boundary

values [e.g. Tb ¼ TbðtÞ] are allowed in the model, the only limitation is that Tb has

to remain homogeneous (no spatial variation along the boundary) to avoid diffusion

between boundary nodes.

For all the computations made for this study, the enthalpy and melt fraction

calculation required a single iteration per timestep to converge within the level of

accuracy displayed in Figs. 2 and 3. Huber et al.18 showed that multiple iterations

are required only when the Stefan number is greater than 1, as in our case S � 1, a

single iteration is expected to yield an accurate treatment of the boundary con-

dition. We found that the choice of S does not affect the stability or accuracy of the

method (as long as S � 1). The maximum S that one can use, and, that allows to

enforce the fixed boundary condition, varies with the domain size and initial con-

ditions. A rule of thumb is to make sure that the initial \sensible heat" integrated

 1e-06

 1e-05

 0.0001

 0.001

 0.01

1  10

δ F

normalized resolution R

R-2

Fig. 4. Error on the cumulative diffusive flux out of an infinite cylinder of radius r between the analytical

solution of Eq. (13) and the lattice Boltzmann model for different resolution factors R. The error

�F � R�2.
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over the volume of the diffusing body, i.e. the initial enthalpy of the domain, is

smaller than the latent heat that can be absorbed by the nodes bounding the objectZ
V

cTðt ¼ 0ÞdV <

Z
�V

Ld �V : ð15Þ

The implementation of Dirichlet BCs with an enthalpy-based method for a fic-

titious phase transition allows us to treat every computational node identically, i.e.

the calculations are the same everywhere in the computational domain. This

becomes advantageous when dealing with diffusing bodies with complex topologies,

because the method does not require any specific treatment for the complicated

boundary.

A wide range of engineering or geological applications require solving the diffu-

sion equation in domains bounded by an idealized fixed (sometimes controlled)

temperature/concentration condition. The topology of these bodies can be complex,

for example heat or molecular diffusion in natural minerals or heat transfer in

components of electric circuits. In the next section, we show an application of the

model to the diffusion of radiogenic chemical elements out of a prismatic mineral

with pyramidal termination. We emphasize that the code used here is identical

(except adapted for 3D) to the one used above for the much simpler and more

symmetrical geometries.

6. Application

In natural systems, the topology of the physical domain over which diffusion occurs

can be arbitrarily complex. In geosciences, solid-state diffusion in mineral phases

can yield very important information about the absolute age (geochronometry using

radioactive elements) and/or the time�temperature pathway of the sample (cooling

evolution of a sample above the closure temperature). In engineering, the efficiency

of the cooling of electronic components in circuits, requires an efficient method to

handle heat conduction with fixed temperatures boundaries. In this section, we

discuss briefly an application of our method taken from geosciences.

Some naturally occurring minerals contain a measurable mass fraction of

radioactive isotopes such as 40K and 238U. As the decay constants of these radio-

active elements have been measured accurately, it is possible to use the par-

ent�daughter ratio (here 40K=40Ar or 238U=234Th) as a clock to measure the age of

the sample. The laboratory procedure that allows to measure the mass ratio

between the parent and daughter elements consists of subjecting the sample (min-

eral) to different degassing steps at different temperatures (between a few hundreds

to a thousand degrees in general) for a few minutes/hours in a vacuum chamber.19

The high temperature allows for faster diffusion of each element in the sample

(molecular diffusivity generally depends exponentially on temperature), and the

mass of each elements leaving the mineral at each step is measured by a mass-

spectrometer. In order to relate the mass released during each heating step to a

1102 C. Huber, J. Dufek & B. Chopard



diffusivity and potentially an age, one needs to use a diffusion model with fixed

concentration (¼ 0, vacuum) at the vacuum�mineral boundary. The boundary

condition model we propose here allows for a simple treatment of the boundary

when solving for the diffusion equation and estimate the mass released for each

element during each laboratory step. In Fig. 5, we show an application of our model

where the diffusion equation, with Dirichlet BCs, is solved in a mineral with a

square basis and pyramidal terminations (like a zircon mineral). The figure shows

the mass fraction of daughter product loss with dimensionless time. The two insets

illustrate the temporal evolution of a contour surface with a fixed concentration of

radiogenic element (left inset) and a schematic illustration of the reference length-

scale a used to define the dimensionless time Fo.

7. Conclusion

We present a novel method to implement Dirichlet BCs for the diffusion equation.

The enforcement of the fixed concentration/temperature along complex boundaries

is replaced by a conceptual model where the boundary becomes the interface

between the object and a reservoir that represent the two phases of a pure substance

during a phase transition. By imposing that the latent heat overwhelms the avail-

able energy for the phase transition in our fictitious model, we fix the interface

spatially between the two phases, and ensure that it remains at the temperature/

concentration consistent with the stability of the two coexisting phases. This

method allows us to apply an identical procedure for each node of the extended

computational domain irrespective to its nature as a part of the diffusing body or its
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Fig. 5. Application of diffusion with fixed concentration/temperature for a mineral with a prismatic

basis and pyramidal terminations. This conceptual example is relevant to the degassing of natural

minerals (for example zircons) where the absolute age of the mineral can be measured from the diffusion of

helium out of the sample during laboratory procedures. Time is made dimensionless with the Fourier

number as Dt=a2, where D is the elemental diffusivity of helium (in this particular case), a is a reference

length-scale in the mineral. Modified from Huber et al.18
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boundary. Avoiding the usage of a special treatment for the boundary of diffusing

body proves to be very efficient when solving the diffusion equation in arbitrarily

complex geometries. This method is moreover applicable to any discretization

scheme and partial differentiation equation solver.
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Appendix

In this Appendix, we show that the enthalpy-based method applied to the LB

Bhatnagar�Gross�Krook (BGK) model can be implemented in a simple way by

combining Eqs. (8) and (10).

At the boundary between the object of volume V and its latent heat \reservoir"
�V , where 0 � �ðx; t � 1Þ þ cðTðx; tÞ � TbÞ=L � 1, we have

fiðxþ ei; t þ 1Þ ¼ fiðx; tÞ þ
1

�H
ðf eqi ðx; tÞ � fiðx; tÞÞ � !iðTðx; tÞ � TbÞ; ðA:1Þ

everywhere else, the evolution equation is

fiðxþ ei; t þ 1Þ ¼ fiðx; tÞ þ
1

�H
ðf eqi ðx; tÞ � fiðx; tÞÞ: ðA:2Þ

Using the definition of the equilibrium distribution f eqi and expanding the distri-

bution into equilibrium and non-equilibrium parts, we get

fi ¼ f eqi þ f neqi ¼ !iT þ f neqi : ðA:3Þ
Using the shorthand notation f outi � fiðxþ ei; t þ 1Þ and f ini � fiðx; tÞ, we see that

Eq. (16) becomes

f outi ¼ !iTb þ 1� 1

�H

� �
f neqi

¼ f eqi ðTbÞ þ 1� 1

�H

� �
f neqi : ðA:4Þ

This shows that the enthalpy method builds a post-collision distribution with the

equilibrium part fixed at the boundary temperature and scales the non-equilibrium

part (which is related to diffusive fluxes) with a factor ð1� 1=�H Þ. In contrast, the

evolution of a non-boundary site can be expanded to

f outi ¼ f eqi ðT inÞ þ 1� 1

�H

� �
f neqi ; ðA:5Þ

where T in ¼ Tðx; tÞ. The enthalpy method proposed here can be replaced by an

equivalent and simpler approach that does not require to introduce new fields such
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as melt fraction or enthalpy where the collision is replaced by Eq. (19) on the sites

marked by a boundary flag. It also shows that in our model imposing a Dirichlet BC

on arbitrarily complex geometries imposes the right temperature/concentration at

the boundary and also does not affect the diffusive fluxes at the boundary (no effect

on the non-equilibrium part of the distribution).
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