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When a buoyant volume of fluid impinges a horizontal boundary, it spreads symmetrically in the
Stokes flow limit. We investigate the low Reynolds number spreading of a low-viscosity volume of
fluid, hereafter called a “bubble”, in the limit that the fluids are miscible and interfacial tension can be
neglected; the symmetry of the bubble’s spreading is broken by allowing the surface to have a finite
slope. We use laboratory experiments, parametrized boundary integral numerical calculations, and a
scaling argument to show that there exists a steady bubble shape with an aspect ratio (ratio of the
semi-axes of the bubble in the horizontal plane) around 1.4–1.6 for slope angles ranging from 5 to 35◦.
The existence of a steady shape, together with a rapid shift in aspect ratio as the slope angle φ increases
from 0, suggests a continuous phase transition caused by a loss of symmetry when the finite slope is
introduced. We show that the time required for the bubble to reach this steady shape and the constant
aspect ratio over the range 10 < φ < 35 support the analogy to a phase transition.

© 2008 Elsevier Masson SAS. All rights reserved.
1. Introduction

In an unbounded Newtonian fluid, isolated drops and bubbles
(hereafter simply called bubbles) rising at small Reynolds numbers
(� 1), will have a spherical shape [1]. In the absence of interfacial
tension, although non-spherical shapes are unstable [2], the shape
will evolve to a spherical volume followed by a narrow trailing
tail [3–5]. In an unbounded fluid, asymmetry in bubble shapes can
be induced by spatially varying interfacial tension [6] or through
interactions between bubbles [7,8].

Bubbles will also deform as they approach a boundary. Below a
horizontal boundary, bubbles maintain their axisymmetry as they
spread (e.g., [9,10]), and symmetry is preserved even if the hori-
zontal interface is deformable [8]. Axisymmetry below a horizon-
tal plane can be broken in two ways; first, below a rigid, no-slip
boundary, by gravitational instability in the squeeze film between
the bubble and the horizontal surface [11], and second, by viscous
fingering due to the Saffman–Taylor instability [12].

Symmetry is also broken if the upper boundary is not horizon-
tal, i.e. its normal is not parallel to gravity. Further, one might
expect that as the slope is continuously increased from horizon-
tal to vertical, the asymmetry of the bubble in the two dimensions
parallel to the slope will increase continuously with the projection
of the buoyancy force along the inclined boundary.
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The shape of gravity currents on a sloping surface has been
studied for the case in which (1) the fluids are miscible and the
spreading fluid is more viscous than the surroundings [13,14] and
(2) the fluids are immiscible and the spreading fluid is less vis-
cous than the surroundings [15–17]. Here, in contrast, we focus on
the limit in which the spreading bubble is much less viscous than
the ambient fluid and the two fluids are miscible, so that interfa-
cial tension plays no dynamic role. This problem is motivated by
geophysical applications in which mantle plumes rise towards the
Earth’s surface and encounter a sloping boundary. This occurs next
to mid-ocean ridges [18,19] and if plumes encounter a subducting
plate [20,21].

Accordingly, in this paper we consider the shape and motion of
a miscible bubble moving at low Reynolds number below a rigid,
sloping, no-slip boundary. We first describe laboratory experiments
that reveal (1) the existence of a steady configuration for bubbles
below finite boundary slopes and (2) a relationship between the
slope and the bubble aspect ratio that was unexpected. Next, in
order to understand some of the experimental observations, we
use a numerical boundary integral method and idealization of the
bubble shape to find solutions for the aspect ratio and speed of
the bubbles. Finally, we present some scaling arguments to explain
the main features of the bubbles.

2. Experiments

Our experiments are designed to monitor the shape and veloc-
ity of a positively buoyant bubble as it rises, impinges and deforms
beneath an inclined boundary. We use two miscible Newtonian flu-
ing below an inclined wall at low Reynolds numbers, European Journal of
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Fig. 1. Top and side views of a bubble with a steady shape (flat bottom, front bulge) for φ = 20◦ . The bubble width 2b is measured from the top view and the bubble length
a is measured from the side view, as shown. The trail behind the bubble represents volume loss by diffusion, which is important only at small angles (φ � 5◦). The halo
surrounding the bubble, highlighted by the white dashed line, is an optical effect due to the bubble’s curvature.

Table 1
Summary of experiments.

φ (◦) V (cm3) μ (Pa s) λ Aspect ratio r ux/U t∗ d∗

3.0 25.0 ±0.1 462 ±12 (2.16 ±0.01)10−5 1.85 ±0.13 0.004±0.002 330 ±70 4±0.55
5.0 30.52 ±0.1 447 ±12 (2.24 ±0.01)10−5 1.50 ±0.11 0.016±0.002 343 ±70 7±1.3

10 40.75 ±0.1 594 ±13 (1.69 ±0.01)10−5 1.40 ±0.05 0.039±0.003 99 ±9.6 5±0.5
13.5 14.0 ±0.1 393 ±12 (2.55 ±0.01)10−5 1.43 ±0.04 0.048±0.004 112 ±9.3 7.6±0.9
18.0 19.0 ±0.1 361 ±11 (2.78 ±0.01)10−5 1.43 ±0.04 0.070±0.003 72 ±6 5.7±0.4
19.5 16.5 ±0.1 393 ±12 (2.55 ±0.01)10−5 1.38 ±0.03 0.091±0.005 53 ±5.3 5.8±0.5
20.5 6.9±0.1 347 ±11 (2.88 ±0.01)10−5 1.58 ±0.04 0.085±0.006 54±4.5 4.8±0.3
24.0 18.5 ±0.1 370 ±11 (2.71±0.01)10−5 1.44 ±0.10 0.099±0.005 47±5.9 5±0.6
27.0 14.9±0.1 396 ±12 (2.53 ±0.01)10−5 1.45 ±0.03 0.112 ±0.006 45 ±5.1 3.8±0.7
31.5 16.5 ±0.1 384 ±12 (2.61 ±0.01)10−5 1.48 ±0.04 0.135±0.006 49 ±5.4 3.4±0.7
35.5 18.2 ±0.1 393 ±12 (2.55 ±0.01)10−5 1.58 ±0.03 0.135±0.006 55 ±5.5 4.5±0.7
36.0 14.8±0.1 396 ±12 (2.53 ±0.01)10−5 1.50 ±0.13 0.140±0.006 51 ±10 7.2±1
ids (corn syrup and water) so that interfacial tension effects can
be neglected. Our previous experiments with similar fluids show
no features that can be attributed to interfacial tension, at least at
length scales and time scales we consider [22]. To begin each ex-
periment, a buoyant bubble (radius ≈ 1.5 cm) is made by injecting
water into a tank filled with corn syrup. The upper boundary is a
rigid plexiglass plate set at fixed angle within the syrup. The top
and side views of the bubble are recorded on video cameras that
are synchronized by a timer.

In these experiments, we control bubble volume and the angle
of the upper boundary. The density of water and corn syrup are
measured using an Anton Paar density meter capable of μg/cm3

precision. The density difference between the bubble and the am-
biant fluid is |�ρ| = 0.4474 g/cm3. The largest source of un-
certainty is the corn syrup viscosity μ1, which is sensitive to
temperature fluctuations in the laboratory (dμ1/dT ≈ 50 Pa s/◦C
and μ1 ≈ 350 Pa s at 25 ◦C, where T is temperature). Because
syrup viscosity is not controlled, it is determined before and after
each experiment by measuring the speed at which a steel sphere
(radius = 0.0032 m, density = 7.974 g/cm−3) descends in the corn
syrup. Comparison of repeated measurements in each experiment
supports our estimated precision for syrup viscosity of ±12 Pa s.

We use a large tank (60 × 30 × 30 cm) compared to the size
of bubble to minimize the effect of the sides of the tank. The du-
ration of most experiments is short (about 10 minutes) compared
to the timescale of diffusion between the fluids, so we neglect any
diffusive mass loss from the bubble. The diffusion length-scale is
about 0.6 mm for the duration of the experiments, using the dif-
fusivities from [23]. After each experiment, most of the water is
removed from the tank, though some persists as a thin layer along
the bubble’s ascent path (see Fig. 1). To avoid the effect of a low-
viscosity conduit from previous runs [24], we stir the syrup and
allow it to homogenize for at least two days between experiments.

We measure the length a of the bubble from the side view
(Fig. 1(right)) and the width b from the top view (Fig. 1(left)).
Please cite this article in press as: C. Huber et al., Steady shape of a miscible bubble ris
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We observe that the bubble reaches a steady shape (constant ratio
r = a/b with flat bottom; see Fig. 1) that is maintained as it rises
along the upper boundary at constant velocity. We measure the
steady shape (aspect ratio) and velocity as a function of bound-
ary inclination using millimeter-scale grids attached to the upper
boundary and sides of the tank. Results from the experiments are
summarized in Table 1.

3. Theoretical model

In order to better understand the parameters that govern the
bubble shape and velocity, we now develop a theoretical model
for a geometrically simplified shape. As the system we consider
is controlled by buoyancy and viscous forces, the dynamics of the
two fluids are described by Stokes equations
{∇ · T1 = −∇p + μ1∇2u1 + ρ1g = 0,

∇ · u1 = 0,
(1)

{∇ · T2 = −∇p + μ2∇2u2 + ρ2g = 0,

∇ · u2 = 0
(2)

where Ti is the stress tensor, g is the acceleration due to grav-
ity, p is the pressure, ui and μi are the velocity and the dynamic
viscosity of fluid i, respectively.

We make the equations dimensionless by introducing the
length-scale R = 3

√
3V /4π and the velocity U = �ρg R2/μ1,

where V is the volume of the bubble and �ρ = ρ1 − ρ2. We also
introduce the dimensionless viscosity ratio λ = μ2/μ1, that we fix
to 2.5 × 10−5 for each calculation.

Using an integral representation of Stokes flow allows us to de-
scribe the velocity at the interface as a function of the interface
stress drop and the velocity distribution as

1

2
u(x0) = − 1

8π

1

λ + 1

∫
〈n̂ · T〉 · J dS + 1

8π

1 − λ

1 + λ

∫
u · K · n̂ dS (3)
ing below an inclined wall at low Reynolds numbers, European Journal of
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where x0 is a point located on the interface between the fluids
S , n̂ is the normal to the surface S (pointing out of fluid 2), 〈n̂ ·
T〉 is the stress jump across the interface (includes the buoyancy
term), and ‖x − x0‖ is the distance between the observation and
the integration points. Eq. (3) is a principal value integral as x0 is
by definition located on the surface over which the integration is
calculated. The velocity kernel J and its associated stress tensor K
describe the velocity and stress from a point force, respectively.

In the case where we neglect surface tension, the stress jump
reduces to

〈n̂ · T〉 = (ĝ · x̂)n̂ (4)

where ĝ refers to a unit vector in the direction of g and x̂ = x/R .
The model can be extended to immiscible fluids by introducing
surface tension in the stress term.

The no-slip boundary condition is introduced using the Lorentz–
Blake Green’s function for a semi-infinite flow bounded by a plane
wall ([25,26], see Appendix A for a more detailed description):

J(x0,x) = JSt(x̂) − JSt(X̂) + 2h2JD(X̂) − 2hJSD(X̂) (5)

where JSt is the Stokeslet, h is the distance between the integra-
tion point and the wall, x̂ = x0 − x and X̂ = x0 − xIM is the vector
connecting the observation point and the image of the integration
point. JD(X̂) is the dipole term and JSD(X̂) is the doublet. Similarly,
we can define the Green’s function for the stress:

K(x,x0) = K(x̂) − K(X̂) + 2h2
0KD(X̂) − 2h0KSD(X̂) (6)

where h0 is the distance between the observation point and the
wall, x̂ = x − x0 and X̂ = x − xIM

0 . The overall stress tensor is a
combination of the Stresslet, the Stresslet at the image point, a
dipole term and the doublet.

The image method has been used extensively for problems
with boundaries [10,25–27] and permits inclusion of the no-slip
condition at the wall explicitly. Among all these terms, only the
Stokeslet and Stresslet are singular as the singularities at the wall
interface are canceled by h0 = 0 in the other terms.

We can estimate the time to reach the steady-state shape using
the velocity distribution obtained from Eq. (3). Using the differen-
tial x velocity component between the bubble’s front (ux(θ = 0))
and the center of mass (uCM

x ), we can monitor readjustments of
the bubble shape as it approaches the steady-state. We compute
the time it takes for the bubble to reach 95% of its deformation
from an axisymmetric (r = a/b = 2) shape to the steady aspect ra-
tio (rg )

t(φ) = −
r∗∫

2

δa(r)

ux(θ = 0, r, φ) − uCM
x

dr (7)

where r∗ = 2−0.95(2− rg) and δa(r) represents the length change
of the bubble for a change in aspect ratio dr. V is the bubble
volume, θ is the angle describing the azimuthal position on the
parametrized surface, and φ is again the angle between the upper
boundary and a horizontal plane (see Fig. 2).

4. Numerical implementation

We solve for the aspect ratio of the bubble at steady-state by
first defining a family of bubble shapes with a single free param-
eter: the aspect ratio r (see Fig. 2). The choice of a single free
parameter and the generic shape stems from laboratory observa-
tions. The aim is also to find the simplest model that captures the
physics observed in the experiments. Among this family of shapes,
we define the “best shape” as the shape which best satisfies the
kinematic boundary condition on the surface of a bubble with a
steady shape. In order to solve Eq. (3) we need to parameterize
Please cite this article in press as: C. Huber et al., Steady shape of a miscible bubble ris
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Fig. 2. Parameterization used for the numerical model. A. View from above (along
z-axis). B. Side view (along y-axis).

the interface. Using observations from experiments, we define our
parameterization Φ (see Fig. 2) by

Φ : R
2 −→ R

3,

(θ, z)
Φ�→ (a − a cos θ,−b sin θ, z) (8)

where −π
2 � θ � π

2 and 0 � z � a tan φ cos θ . The lower (z = 0)
surface and its image do not contribute to the integrals because
they are free-slip boundaries and isobaric surfaces. The surface
along the wall (z = a tan φ cos θ ) is canceled from the integrals in
Eq. (3) by the choice of Green’s functions. In the absence of cap-
illary effects and in the limit λ � 1, we neglect the effect of the
squeeze layer between the bubble and the wall [17,28]. We justify
this approximation by arguing that a narrow film (thickness δ) of
high viscosity fluid in contact with a wall can be approximated by
a no-slip boundary. As the stresses responsible for the motion of
the bubble scale with its buoyancy, and since corn syrup viscosity
is several orders of magnitude higher than that of water, the veloc-
ity gradients in the squeeze layer are small. In addition, because of
the small relative size of the squeeze layer δ compared to a or b,
we can assume a no-slip boundary condition between the bubble
and fluid in the squeeze layer.

Because the stress jump is known for our parametrization,
Eq. (3) is a Fredholm integral equation of the second kind. The
two integrals of Eq. (3) contain a singularity at x = x0. In the first
integral, the singularity can be removed analytically by applying
a singularity subtraction. The singularity in the second integral is
treated by meshing the surface into low-curvature stripes to can-
cel the contribution of the product x · n̂ (from the product K · n̂) in
the stripe containing the singularity.

In order to solve the surface integrals in Eq. (3), we begin by
meshing the surface into N stripes (according to θ ) delimited by

−π

2
+ m

π

N
� θm � −π

2
+ (m + 1)

π

N
, m = 0, . . . , N − 1,

0 � zm � tan φ cos(θm). (9)

We then assume constant velocity on each element and con-
struct a linear system from Eq. (3). The surface integrals over each
stripe are calculated by an eight point Gauss–Legendre quadrature
scheme in each of the two dimensions (z, θ ). The steady-shape
should satisfy the kinematic condition
(
u − 〈u〉) · n̂ = 0 (10)

at every point on the surface of the bubble, 〈u〉 is the velocity
of the bubble’s center of mass. We then define the dimensionless
parameter

D

(
r = a

b

)
= 1

A|〈u〉|
∫ ∣∣(u − 〈u〉) · n̂

∣∣dS (11)
ing below an inclined wall at low Reynolds numbers, European Journal of
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Fig. 3. (left) Comparison of the steady aspect ratio (r = a/b) obtained from the laboratory experiments with parametrized numerical calculations. See text for discussion.
(right) Comparison of the bubble velocity in the x-direction between experiments and numerical calculation. The scaling relation obtained in Eq. (17) is shown for reference.
The error bars for the numerical calculations are smaller than the symbols.
where A is the area of the surface we parameterize and |〈u〉| is
estimated from the magnitude of the x component of velocity at
the front of the bubble (θ = 0). D is a measure of the deviation
from the steady-state velocity for a given choice of aspect ratio.
As we adopt a simplified parameterization of the bubble geometry
that describes the general shape of the bubbles in our experiments,
D will not be zero but has a minimum value (> 0 for this idealized
case) for the aspect ratio that best approximates the steady shape.

For a numerical solution, Eq. (7) can be discretized to

t =
Nsteps∑

k=2

3
√

3V rk−1/(2 tan φ) − 3
√

3V rk/(2 tan φ)

|ux(θ = 0,k − 1) − uCM
x (rg)|

. (12)

The sum is calculated from r = 2 (corresponding to k = 1) to
r∗ = 2 − 0.95(2 − rg) (corresponding to k = Nsteps). The numera-
tor represents the length change in the x direction associated with
the readjustment of the bubble shape.

5. Results and discussion

For a bubble spreading beneath a horizontal boundary, the as-
pect ratio a/b is 2 because of the symmetry of the problem. The
bubble will spread indefinitely if we neglect molecular scale effects
yet maintain an axisymmetric shape (e.g. [11,29]).

For the case with a sloping upper boundary, our numerical re-
sults reveal the existence of a single minimum of D . In addition,
the velocity distribution shows that the bubble shape adjusts to
converge to the aspect ratio which corresponds to the minimum
of D . These two observations point to the existence of a steady
shape, consistent with our experimental observations. Fig. 3 (left)
compares steady aspect ratios obtained from experimental mea-
surements to numerical calculations. Both datasets are in reason-
able agreement, with aspect ratios between 1.4–1.6 over the range
of angles explored experimentally. We interpret these aspect ratios
(for φ > 5◦) as being roughly constant.

The existence of a steady shape (i.e. favored aspect ratio) for fi-
nite, non-zero, upper boundary angles can be inferred by assuming
a balance between energy dissipation and the rate at which grav-
itational potential energy is lost by the bubble. Similar reasoning
has been applied to different problems involving the motion of im-
miscible drops in viscous fluids [17]. Although viscous dissipation
in the squeeze layer between the bubble and the sloping bound-
ary can be important for immiscible fluids [15–17], here it can be
neglected because of the absence of capillary effects for miscible
fluids and the free-slip boundary condition (λ � 1) between the
bubble and the lubricating film. For the sake of this argument, we
assume that the aspect ratio of the bubble is mostly independent
Please cite this article in press as: C. Huber et al., Steady shape of a miscible bubble ris
Mechanics B/Fluids (2008), doi:10.1016/j.euromechflu.2008.11.001
of the slope angle φ as observed in both numerical calculations
and experiments (Fig. 3). We thus assume that πφ/180 � 1 and
b ≈ a for the sake of the following scaling argument. The viscous
dissipation associated with the bubble’s motion in the (x, y) plane
therefore occurs within the ambiant fluid in a volume V f propor-
tional to the volume of the rising bubble V .

V f ∼ V

φ
∝ a3. (13)

Viscous dissipation scales as

Ėdis ∝ μ1

( 〈u〉
a

)2

V f . (14)

The rate of gravitational potential energy loss scales as

Ėpot ∝ �ρg〈u〉φV . (15)

The balance between these two terms leads to

〈u〉 ∝ �ρgV 2/3φ4/3

μ1
, (16)

implying that

〈u〉
U

∝ φ4/3, (17)

where U is the velocity scale defined by Eq. (16). Fig. 3 (right)
compares the velocity of the bubble in the x direction obtained
from experimental measurements and numerical results. The scal-
ing relationship of Eq. (17) is shown in Fig. 3 (right) for reference.
Both results exhibit the same general trend (roughly linear de-
pendence of the velocity on the angle). However, the numerical
results tend to systematically over-estimate the experimental data.
As noted previously, the velocity scales with the square of the
maximum thickness of the bubble. Comparing the mass distribu-
tion of the real bubble (Fig. 1) with the parametrization used in the
theoretical model (Fig. 2), we observe that the maximum thickness
of the bubble is over-estimated by the theoretical model, which
does not include the bulge at the front of the bubble. The rela-
tive size of the bulge does not depend on φ within the range of
angles studied experimentally, and hence, the relative discrepancy
between experimental and numerical results remains a constant
fraction of the bubble velocity.

Fig. 4 (left) shows the time required for the bubble to adjust
to its steady shape, estimated from Eq. (12). The divergence of the
time when the upper boundary becomes horizontal is reminiscent
of a critical slowing down close to the critical point (φ = 0) of a
phase transition, where the time to reach a new equilibrium con-
figuration diverges as a power-law as the order parameter (φ) ap-
proaches its critical value. The time to reach a steady bubble shape
ing below an inclined wall at low Reynolds numbers, European Journal of



ARTICLE IN PRESS EJMFLU:2367

JID:EJMFLU AID:2367 /FLA [m5G; v 1.18; Prn:1/12/2008; 10:45] P.5 (1-6)

C. Huber et al. / European Journal of Mechanics B/Fluids ••• (••••) •••–••• 5
Fig. 4. (Left) Time to reach the steady aspect ratio defined by Eq. (7) normalized by R/U . The scaling relationship of equation 20 provides a first approximation to the
dynamic critical exponent β = −5/3. (Right) Horizontal distance traveled before reaching the steady aspect ratio, normalized by R , the power-law dependence calculated by
the scaling relationship obtained in Eq. (21), d ∝ φ−1/3, is also represented here. The error bars for the numerical calculations are smaller than the symbols.
for small φ can be estimated by comparing the bubble spreading
velocity along an horizontal boundary usp, which according to lu-
brication theory [10,14] scales as

usp ∝
(

�ρgV 2

μ

)1/5

t−4/5, (18)

to the ascent velocity of the bubble along the wall,

〈u〉 ∝ �ρg(aφ)2/μ1. (19)

Substituting a = (V r/ tanφ)1/3, where r is the aspect ratio of the
bubble (∼ cst), and solving for t , these velocities are comparable
when

t ∝ φ−5/3. (20)

This scaling relationship is plotted on Fig. 4 (left) and is consistent
with the data. The slowing down we observe should not be at-
tributed solely to a critical phenomena in the vicinity of the phase
transition, but also to the slower dynamics at small angle φ. It is
important to note that even for very small angles, a steady bubble
shape exists, although the time required for the bubble to reach
the steady shape increases dramatically. Moreover, at small angles,
the experimental error on the slope, and the possible bending or
surface roughness of the plate, can have a large influence on the
aspect ratio. At φ = 3◦ , the width of the bubble is large enough
to interact with the tank boundaries and the duration of the ex-
periment is long enough that mass loss through diffusion can no
longer be neglected (diffusion length ∼ 1 mm, more than 10% of
the mean thickness of the bubble). Consequently, the approach to
steady-state is perturbed and the reliability of the measurements is
reduced. Nevertheless, Figs. 3 and 4 clearly show that experiments
and numerical results follow the same trend, even when the slope
of the upper boundary is small (φ ∼ 5◦).

Fig. 4 (right) shows the estimated horizontal distance that the
bubble travels before reaching a steady aspect ratio. Unlike time,
distance should not be affected by the slowing down of the dy-
namics at low angles. We can estimate the distance traveled by
the bubble before it reaches a steady shape from the scaling rela-
tionship (20) and the projection of the bubble ascent velocity on
the inclined wall (19),

d ∼ 〈u〉t ∝ φ−1/3. (21)

Fig. 4 (right) shows that this power-law relationship is again con-
sistent with our results.
Please cite this article in press as: C. Huber et al., Steady shape of a miscible bubble ris
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6. Concluding remarks

Our study reveals the existence of a steady shape for a bubble
rising beneath an inclined boundary unlike the case where the up-
per boundary is horizontal in which spreading is symmetric [18,
19]. The behavior of the bubble aspect ratio is reminiscent of a
continuous phase transition at φcritical = 0 (according to the theory
of [30]). Further evidence for this phase transition includes (1) a
critical slowdown as the angle approaches the critical value and
(2) a constant aspect ratio (1.4–1.6) for 5 < φ < 35. Other exam-
ples of a phase transition occurring via the breaking of symmetry
are (1) ferro-magnetism [31,32] and (2) some crystal polymorphs
(see for example [33]). In both of these cases, the low symmetry
phase (φ �= 0) is a subgroup of the high symmetry phase (φ = 0),
which is characteristic of continuous phase transitions. For a hor-
izontal upper boundary, the system has an axial symmetry about
the z direction. Upon introducing a slope to the upper boundary,
the symmetry is broken by the projection of the buoyancy force on
the horizontal plane (x, y).

In summary, the simplified parameterization introduced in Sec-
tion 4 is able to capture the essential behavior of the experi-
ments. Our results also show that the angle of the upper boundary
(5 < φ < 35) has a limited effect on the steady bubble aspect ratio.
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Appendix A. Green’s functions

The Lorentz–Blake Green’s functions for the velocity are given
by

J St
i j (x) = δi j

|x| + xi x j

|x|3 , (22)

J D
i j (x) = ±

(
δi j

|x|3 − 3
xi x j

|x|5
)

, (23)

J SD
i j (x) = x1 J D

i j (x) ± δ j1xi − δi1x j
3

(24)
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where the plus sign is chosen when j is not coinciding with the
direction normal to the plane of the wall. The different members
of the associated stress tensor are

Kijk(x) = −6
xi x j xk

|x|5 , (25)

K D
ijk(x) = ±6

(
− δikx j + δi j xk + δkj xi

|x|5 + 5
xi x j xk

|x|7
)

, (26)

K SD
ijk(x) = x1 K D

ijk(x) ± 6

(
δikx j x1 − δ j1xi xk

|x|5
)

. (27)

These definitions are valid for a Cartesian reference frame aligned
with the boundary. The Green’s function were calculated in their
original reference frame and then rotated to the natural reference
frame of our parametrization (x, y, z of Fig. 2) for the sake of the
integrations.
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