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Reactive processes associated with multiphase flows play a significant role in mass
transport in unsaturated porous media. For example, the effect of reactions on the
solid matrix can affect the formation and stability of fingering instabilities associated
with the invasion of a buoyant non-wetting fluid. In this study, we focus on the
formation and stability of capillary channels of a buoyant non-wetting fluid (developed
because of capillary instabilities) and their impact on the transport and distribution
of a reactant in the porous medium. We use a combination of pore-scale numerical
calculations based on a multiphase reactive lattice Boltzmann model (LBM) and
scaling laws to quantify (i) the effect of dissolution on the preservation of capillary
instabilities, (ii) the penetration depth of reaction beyond the dissolution/melting front,
and (iii) the temporal and spatial distribution of dissolution/melting under different
conditions (concentration of reactant in the non-wetting fluid, injection rate). Our
results show that, even for tortuous non-wetting fluid channels, simple scaling laws
assuming an axisymmetrical annular flow can explain (i) the exponential decay of
reactant along capillary channels, (ii) the dependence of the penetration depth of
reactant on a local Péclet number (using the non-wetting fluid velocity in the channel)
and more qualitatively (iii) the importance of the melting/reaction efficiency on the
stability of non-wetting fluid channels. Our numerical method allows us to study the
feedbacks between the immiscible multiphase fluid flow and a dynamically evolving
porous matrix (dissolution or melting) which is an essential component of reactive
transport in porous media.
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1. Introduction
Porous media flows with immiscible fluids are ubiquitous in subsurface Earth

environments. The distribution and saturation level of the different fluids have a
drastic effect on the dynamics of the system. The dynamics at the pore scale is
controlled by capillary forces between the different fluid phases and the solid matrix.
A pore-scale description of the mass transport for the different fluid phases is therefore
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critical to better understanding of problems associated with gas and oil reservoirs, the
decontamination of a polluted vadose zone (Lundegard & Andersen 1996), degassing
processes in volcanic environments (Bachmann & Bergantz 2006; Huber, Bachmann
& Manga 2010) and nuclear waste (Woods & Norris 2010), and CO2 storage in a
geological disposal facility (Farcas & Woods 2009; Woods & Norris 2010).

Multiphase flows in porous media are often associated with the transport of
additional dissolved components (chemicals, contaminants) or heat. In many instances,
their presence drives reactions at either the fluid–fluid interface (change in surface
tension due to surfactants) or fluid–solid interface (dissolution/melting/precipitation
due to chemical reactions and melting/solidification due to heat transfer between
different phases). These reactions can ultimately affect the pore-scale geometry and
lead to a local change in permeability and phase saturation. Reactions can exert a
strong control on the discharge of fluids and advected quantities. The determination
of the length and time scales over which reaction processes affect the porous medium
have fundamental implications for matrix acidification processes in oil reservoirs, as
well as the thermal evolution of a volcanic system in magmatic environments.

Mass transport in multiphase porous media flows is controlled by pressure gradients,
buoyancy, viscous and capillary forces. Their relative importance determines the
behaviour of the flow in the porous media. Saffman & Taylor (1958) showed that,
when the invading fluid has a lower viscosity than the defending fluid, viscous
fingering instability grows, leading to the development of invading fluid channels,
hereafter referred to as capillary channels or fingers. On the other hand, when the
viscosity of the invading fluid is comparable to or greater than that of the defending
fluid, heterogeneous pore geometries and/or fluid saturation can promote the formation
of capillary instabilities (e.g. Lenormand, Touboul & Zarcone 1988). The formation
of channels strongly influences the macroscopic (Darcy-scale) fluid discharge. The
existence of preferential pathways (channels) for the non-wetting fluid can have a
disruptive influence, for example in the context of secondary oil recovery, or a positive
impact for the concentration of base metals to form ore deposits.

The dynamics that control mass transport and channel formation in reactive porous
media is highly nonlinear. The development of quantitative models at the pore scale,
their upscaling and introduction into larger-scale transport models is a necessary step
towards a better understanding of reactive porous media flows. This study aims to
understand the evolution of capillary fingers in a dissolving porous medium, and
characterize the effect of dissolution and dissolution rates on the transport of reactant
and the local evolution of the porous medium. Laboratory experiments of multiphase
flows in porous media have significantly improved our understanding of both miscible
and immiscible fluid dynamics in porous media. For example, experiments of flow-
front instability in homogeneous and heterogeneous porous media have been successful
in testing scaling laws describing the spacing of fingers and their growth rates (see for
example Homsy 1987; Glass, Steenhuis & Parlange 1989), and in studying the effect
of reactions between two miscible fluids on the rheology of the mixture and its effect
on the fingering dynamics (Nagatsu et al. 2007, 2009, 2011). However, in most cases
(such as the processes studied here), the design of a suitable laboratory experiment
becomes extremely challenging. As we show with our results, the dissolution rates
exert primary control on the evolution of capillary fingers and, by extension, on the
transport of reactant in the porous medium. Scaled experiments with slow dissolution
rates, such as those characteristic of most natural systems, and, where the evolution
of the system is monitored at the pore scale throughout the duration of the whole
experiment, are still lacking. In this study, we therefore propose a first approach to the
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pore-scale evolution of fingering instabilities in a dissolving porous medium using a
combination of numerical calculations and scaling arguments.

Numerical simulations provide an attractive tool for the investigation of pore-scale
processes. A wide range of numerical methods, such as dissipative particle dynamics
(Hoogerbrugge & Koelman 1992), smoothed particle hydrodynamics (Gingold &
Monaghan 1977) and lattice Boltzmann (LBM) (Chen & Doolen 1998) have
been used, for example, to study pore-scale processes in a multiphase fluid flow
environment. On the other hand, pore-network models offer a less computationally
expensive alternative (these models do not resolve for interface separation between
immiscible fluids), but unphysical assumptions such as fluid saturations limited to
either 0 or 1 in pores rule them out for the study of reactive flows at the pore scale
(Meakin & Tartakovsky 2009). In this study, we use the lattice Boltzmann method
because of its ability to model single and multiphase flows in complex geometries
(Martys & Chen 1996; Olson & Rothman 1997; Sukop et al. 2008; Boek & Venturoli
2010) and its efficiency in terms of parallelization of the algorithms (Chen & Doolen
1998).

We focus on the effect of melting on the flow of an invading buoyant non-wetting
fluid in a porous medium. We use largely parallel numerical calculations and simple
scaling arguments to study the formation and viability of capillary channels (channels
of non-wetting fluid formed by capillary instabilities) as they transport reactant/heat
through an evolving porous medium (dissolution/melting). We investigate the effect
of melting on the stability of these channels and characterize the distribution of
melting/reaction in the porous medium for different injection rates and melting
efficiencies.

In the following section, we describe the physical model for the system under
investigation and briefly introduce the conservation equations relevant to our
calculations. In § 3, we present the lattice Boltzmann (LB) algorithm for thermal
reactive multiphase flow in porous media developed for this study. The algorithm
solves for the conservation of momentum for each fluid and the conservation of
enthalpy for the three different phases (solid and the two immiscible fluids). In the
fourth section, we present scaling laws and numerical results to address the question of
the stability of capillary channels and the mass/heat transport associated with them.

2. Physical model
Our study focuses on the effect of reactant transported by a buoyant non-wetting

fluid injected at the base of a porous medium. Because of the nonlinear nature of
the problem, where the dynamical coupling between the three different phases (two
immiscible fluids and solid) at the pore scale governs the evolution of the porous
medium, we focus on a pore-scale, as opposed to Darcy-scale, description of the
system. To simplify the following discussion, we use melting and heat transfer as
an example, but the discussion applies also to dissolution problems associated with
chemicals transported by the non-wetting fluid (governed by the same set of equations).
We assume that a porous medium made of two different solids, one melting at a
lower temperature (fertile solid fraction) and one melting at a temperature outside the
range of interest in our calculations (refractory solid fraction) is initially saturated with
a neutrally buoyant fluid (see figure 1). The fluid and solid are initially in thermal
equilibrium at the melting temperature of the fertile solid fraction Tm. The base of
the porous medium is then subjected to the injection (at a volume rate qnw) of a
buoyant non-wetting fluid at a temperature T0 > Tm. We also raise the temperature of



4 A. Parmigiani, C. Huber, O. Bachmann and B. Chopard

nw Hnw
unw

1.0

0.20

Non-wetting flux Enthalpy flux Buoyancy force

Non-wetting 
mass conservation 

Non-wetting 
enthalpy conservation

Non-wetting 
momentum conservation

(a) (b) (c)

T0

Tm
1

FIGURE 1. (Colour online available at journals.cambridge.org/flm) Snapshots of calculations
with a Stefan number St = 0.1 and a local Péclet number Pe = 42. The porous medium
contains approximately 20 000 crystals and has an initial porosity of 0.41. (a) Density
contours for the non-wetting fluid; note the connected pathways (capillary channels). A fixed
mass of buoyant non-wetting fluid is injected periodically in the inlet region (below the
porous medium). (b) Normalized excess enthalpy (superheat) carried by the non-wetting fluid.
Bubbles are injected in the inlet with a normalized superheat of 1 (0 represents the enthalpy
of melting of the porous medium) and provide the heat to partially melt the porous medium.
(c) The non-wetting fluid velocity (here the magnitude) is controlled by the geometry of the
pathways, the buoyancy (Bond number) and the injection rate (capillary pressure).

the boundary condition at the base of the porous medium to T0 (thermal equilibrium
with the bubbles of injected non-wetting fluid).

The heat transferred from the lower boundary and from the ascending non-wetting
fluid bubbles is transferred to the wetting fluid and porous matrix resulting in the
partial dissolution/melting of the latter. Because of capillary forces and heterogeneities
in the pore-size distribution of the porous medium, capillary instabilities develop and
control the spatial distribution of the invading non-wetting fluid and therefore the
localization of melting. The viscosity ratio between the two fluids can have a strong
influence on the development of capillary instability and the discharge of non-wetting
fluid through the porous medium. Our calculations assume for simplicity a viscosity
ratio of 1 between the two fluid phases; the importance of the viscosity ratio will be
assessed in further studies.

The problem we are solving is described by mass conservation for each of the two
fluids and the solid fraction in the porous medium,

∂ρs(x)
∂t
=−Γm(x), (2.1)

∂ρw(x)
∂t
+∇ · (ρw(x)uw(x))= Γm(x), (2.2)

∂ρnw(x)
∂t

+∇ · (ρnw(x)unw(x))= Γinj(x), (2.3)

http://journals.cambridge.org/flm
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where Γm is the melting rate, Γinj is the mass injection rate of non-wetting fluid,
ρs, ρw and ρnw are respectively the local density of solid, wetting and non-wetting
fluids, uw and unw are the wetting and non-wetting fluid velocities. The injection
rate of non-wetting fluid can be described in terms of an injection capillary number
Ca = qnwµnw/(γR2) (Lenormand et al. 1988; Ewing & Berkowitz 1998), where qnw is
the volume rate of injected non-wetting fluid, γ is the surface tension between the
two fluids and R is a reference length scale here fixed to the average pore radius size.
Defining the local injection rate per unit volume φq,

qnw =
∫

V
φq dV, (2.4)

where the volume V here includes the porous medium plus the inlet and outlet
chambers, Γinj becomes

Γinj = ρnwφq,

∫
V
Γinj dV = ρnwγR2Ca

µnw
. (2.5)

Momentum conservation for the two fluids yields

∂ρw(x)uw(x)
∂t

+ (ρw(x)uw(x) ·∇)uw(x)=∇ · Tw(x)+Φw(x), (2.6)

∂ρnw(x)unw(x)
∂t

+ (ρnw(x)unw(x) ·∇)unw(x)=∇ · Tnw(x)+Φnw(x), (2.7)

where T is the stress tensor, Φw and Φnw are inertial terms associated with,
respectively, melting and injection:

Φw(x)= Γm(x)uw(x), (2.8)
Φnw(x)= Γinj(x)unw(x). (2.9)

The stress tensor for each fluid phase is given by

Ti =−pI + µi(∇ui +∇uT
i )+ ρi(g · x)I, (2.10)

where I is the identity matrix, p is the pressure and g is the acceleration due to gravity.
Normalizing velocities by U = (ρw − ρnw)gR2/µw and length scales by the average
pore radius R, the stress jump associated with surface tension at the interface between
the two fluids becomes (Stone & Leal 1990; Pozrikidis 1992; Manga & Stone 1993)

n · T ∗w(x)− λn · T ∗nw(x)=
1
Bo
(∇s ·n)n− (ĝ · x)n, (2.11)

where the superscript ∗ refers to a dimensionless variable, x is located at the interface
between the two fluids, n is the outward normal to the interface, ∇s is the gradient
along the interface, Bo=1ρgR2/γ is the Bond number and λ= µnw/µw.

Finally, we solve for the conservation of enthalpy for the three phases

∂(ρscsTs)

∂t
=−∇ ·Qs, (2.12)

∂(ρwcwTw)

∂t
=−∇ ·Qw, (2.13)

∂(ρnwcnwTnw)

∂t
=−∇ ·Qnw, (2.14)
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where Ti refers to the temperature of phase i, ci to the specific heat and Qi the heat
flux

Qs(x)=−ks∇Ts(x), (2.15)
Qw(x)= ρw(x)cwuw(x)Tw(x)− kw∇Tw(x), (2.16)
Qnw(x)= ρnw(x)cnwunw(x)Tnw(x)− knw∇Tnw(x), (2.17)

with ki the thermal conductivity of phase i. Melting is introduced by matching the heat
fluxes across the solid–fluid interfaces. Using the same velocity and length scales as
for the stress jump at the fluids interface, we obtain an explicit formulation for Γm(x):

u∗w(x)T
∗
w(x)−

1
ξλPe

∇∗T∗w(x)+Λu∗nw(x)T
∗
nw(x)−

1
Pe
∇∗T∗nw(x)

=− 1
A
∇∗T∗s +

1
λSt

BΓm(x), (2.18)

where St = cnw(T0 − Tm)/Lf , T0 is the temperature of the non-wetting fluid at
the injection, Tm is the melting temperature of the fertile fraction of the porous
medium (T0 > Tm), Lf is the latent heat of fusion, Λ = ρnwcnw/(ρwcw), ξ = κnw/κw,
Pe =U R/(κnw) is the Péclet number for the non-wetting fluid, A = ρwcwRU /ks and
B = (ρwU R2)−1. In (2.18), we assumed that the fertile solid fraction melts as a pure
substance (fixed melting temperature Tm), similarly to a Stefan problem.

This set of governing equations, together with the set of stress and heat transfer
boundary conditions between the different phases, fully describes the dynamical
evolution of the system for a given (evolving) porous matrix geometry. The following
section presents the numerical strategy we developed to solve this complex and highly
coupled set of equations.

3. Numerical model
Our choice of numerical method is dictated by the necessity of solving for the

multiphase dynamics at the pore scale (i) to avoid resorting to poorly constrained
constitutive equations, and (ii) to solve for the reactive process and the feedback
between flow and reactant transport associated with melting/dissolution. The field of
multiphase flows in porous media has an extensive literature, an important part of
which is devoted to numerical models for investigating fingering phenomena in porous
media. A first class of model assumes a Darcy-scale description of the multiphase flow
and is based on various extensions of the Richards equation (RE). The stability of
the standard RE to fingering has been shown and demonstrated rigorously by Eliassi
& Glass (2001), Egorov et al. (2003), van Duijn, Pieters & Raats (2004), Nieber
et al. (2005) and Fürst et al. (2009). Several authors have modified RE successfully
to reproduce fingering instabilities observed in the context of laboratory experiments
(Nieber et al. 2003, 2005). Chapwanya & Stockie (2010) showed that, in the context
of RE, the growth of fingering instabilities requires the inclusion of non-equilibrium
effects to correct for the evolution of the capillary pressure in response to saturation
changes. This is usually done by introducing a relaxation to equilibrium, but the
choice of the relaxation functional form remains an open question (Chapwanya &
Stockie 2010). Cueto-Felgueroso & Juanes (2008, 2009a,b) used a different approach
in analogy with low-Reynolds-number gravity currents (Huppert 1982) to justify the
introduction of an additional term in RE that allows for fingering instabilities to
grow. Nevertheless, the latter model still requires constitutive equations to account
for pore-scale effects at the Darcy scale, such as the relative permeability–saturation
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relationship and the macroscopic surface tension. These constitutive equations are very
sensitive to the topology of the porous medium and, for realistic geometries, cannot be
derived from first principles.

Another field of numerical investigations for the invasion of a fluid in a saturated
porous medium is based on pore-network models (Lenormand et al. 1988; Ewing &
Berkowitz 1998; Blunt 2001). These models solve a simplified dynamics at the pore
scale, where every pore is fully saturated by one phase or the other. The capillary
coupling between the two phases is then greatly simplified. The scale of resolution of
these models is one node per pore, no gradients of flow velocity or scalar fields can be
computed, and as a result these models cannot solve for solute transport by one of the
two fluid phases.

The ideal choice of numerical method for the present study is dictated by the
following considerations: (i) the ability to compute the multiphase dynamics at the
pore scale, (ii) the ability to handle complex-moving boundaries in a simple and
consistent fashion, fluid–fluid and fluid–solid interfaces, (iii) the ability to deal with
bubble coalescence and breakup, and (iv) efficient parallelization so that the number
of pores is large enough to draw significant results from the calculations. Several
numerical methods have been proposed to solve the pore-scale dynamics explicitly,
such as the volume of fluid (Hirt & Nichols 1981; Huang, Meakin & Liu 2005)
and level set methods (Osher & Sethian 1988). These methods usually require
a front-tracking algorithm for the fluid–fluid interface and become computationally
intense when dealing with a large number of bubbles, with coalescence and breakup
and bounded by a complex (and for us time-dependent) solid topology. Meakin &
Tartakovsky (2009) present a discussion of the advantages and limitations of various
numerical techniques for pore-scale reactive flow calculations, they highlight that the
lattice Boltzmann method offers an efficient alternative for large-scale computations of
multiphase flows in complex porous media. Another advantage of using LB models for
immiscible flows over models based on Darcy-scale approximations or pore-network
models, is that it allows us to resolve pore-scale dynamics and moving boundaries
(melting) naturally (Huber et al. 2008).

3.1. The lattice Boltzmann equation and the Bhatnagar–Gross–Krook collision operator
The quantity of interest in the lattice Boltzmann method is the discrete particle
distribution function fi. In analogy with statistical mechanics, fi(x, t) expresses the
probability of finding a particle that enters a lattice node x at time t along a given
lattice velocity vi (set of vectors connecting nearest neighbours lattice nodes, along
which the fi are allowed to stream). The evolution of the fi is described by a
discrete version of the Boltzmann equation. In general, the complex collision term
in Boltzmann’s equation is replaced by the simple BGK approximation (Bhatnagar,
Gross & Krook 1954), the discrete Boltzmann equation becomes

fi(x+ vi1t, t +1t)− fi(x, t)=−ω(fi(x, t)− f eq
i (x, t)) (3.1)

where 1t is the discrete time step. The first term on the right-hand side of (3.1)
represents the BGK rule for collision between the fi. The BGK collision expresses
how the fi, after collision, relax to the local equilibrium distribution function f eq

i with
a single relaxation frequency ω. The choice of relaxation frequency ω controls the
kinematic viscosity of the fluid

µ

ρ
= c2

s

1x2

1t

(
1
ω
− 1

2

)
, (3.2)
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where c2
s is the sound speed of the lattice (a constant that depends on the spatial

discretization used) and 1x is the grid spacing. The f eq
i are obtained from a

second-order Taylor expansion of the Maxwell–Boltzmann distribution. An additional
source/sink term Ξi can be introduced into the right-hand side of (3.1). This
source/sink term allows us to include reactive processes (Kang, Lichtner & Zhang
2006; Huber et al. 2008) or external body forces (Guo, Zheng & Shi 2002b; Latt et al.
2010). In order to model complex natural systems, the governing equations have to be
properly coupled. We use a multi-distribution function (MDF) approach (Shan 1997;
Guo, Shi & Zheng 2002a; Parmigiani et al. 2009) to address this particular issue. In
the MDF approach, any conservation law associated with different transport properties
(i.e. viscosity, diffusivity etc.) is described with a different set of particle distribution
functions fi.

In this study, we developed a lattice Boltzmann model that couples a well-
established multiphase flow model (multi-component Shan–Chen method: Shan &
Chen 1993) with a thermal model that solves for the enthalpy conservation in a
porous medium. The thermal model we use allows for melting (dissolution) of the
solid matrix and is based on the melting model of Huber et al. (2008). Although
the individual components (melting, multiphase flow) of the numerical model have
been tested and validated in other studies (see the validation section below), their
combination is new and allows us to investigate the pore-scale evolution of a porous
medium subjected to dissolution during the invasion of a reactive non-wetting fluid.
Understanding the possible feedbacks between capillary instabilities (Saffman–Taylor
instability) that enhance the transport of reactant and dissolution which affects the
evolution of the capillary fingers is challenging and, to our knowledge, this is the first
attempt to quantify these processes.

In order to obtain results that are significant beyond the pore scale (to introduce
corrections into Darcy equation), we use a crystal nucleation and growth algorithm
derived from the model of Avrami (1940) and modified by Hersum & Marsh (2006)
to generate a crystalline porous matrix that is large enough (order of several thousands
of pores) to yield statistically significant results. In this work, all calculations used a
synthetic porous media matrix composed with ∼20 000 crystals with various shapes
and sizes representing a grid with 200 × 200 × 300 lattice nodes (see figure 2). The
mean pore radius is ∼10 grid nodes (this length scale will be used later as the
characteristic length to normalize distances). In this work, we build a solid matrix with
two different crystal species, assuming that they have different melting temperatures.
The first type of crystal occupies initially 38 % (see figure 2a) of the sample volume
and has a melting temperature T = Tm that corresponds to the initial temperature of
the wetting fluid and porous medium. The second crystal family represents 21 % (see
figure 2b) of the sample volume, and was set with a melting temperature such that it
will never melt during the course of our calculations.

The initial porosity of our synthetic sample is 0.41 (see figure 2). This lattice size
and the number of distribution functions involved are computationally challenging. The
local nature of the LB and the efficiency of the code we used, based on the Palabos
platform (Palabos 2010), allowed us to perform approximately 60 calculations at four
different St numbers and four different Pe numbers, where each simulation was run on
2000 processors for running times ranging from 12 to 60 h.

3.2. LB scheme for immiscible fluid flows in porous media
The lattice Boltzmann community has developed a variety of models for multiphase
and multi-component fluid flow applications. These different LB algorithms can be
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FIGURE 2. (Colour online) Solid fraction of the porous medium for this study. The initial
porosity φ is 0.41. The texture is composed of two different solids. The first family of
‘crystals’, hereafter called the fertile fraction, is set initially at its melting temperature (pure
substance melting) and represents ∼38 % of the sample volume. The second family, hereafter
called the refractory fraction, occupies 21 % of the sample volume and never melts during our
calculations.

grouped into two classes depending on their approach to modelling non-ideal fluid
behaviours. In a first class of models (Swift et al. 1996; He, Chen & Zhang 1999),
the definition of a free energy function is required. This choice leads to a continuum
mathematical formulation described by the Cahn–Hilliard theory (Cahn & Hilliard
1958). A second class of models is based on first principles for the microscopic
interaction between the two fluids (Gunstensen et al. 1991; Shan & Doolen 1995).
These models converge to the continuum mass and momentum conservation for a
slightly compressible multi-component mixture of fluids (Shan & Doolen 1995).

All these models, however, belong to a more general class diffuse-interface methods
(Anderson, McFadden & Wheeler 1998). For the case of an immiscible binary mixture,
this means that when the equilibrium state is reached, the two fluids are separated by
an interface of finite thickness δ. The mean field nature of the LB algorithms allows
us to study capillary effects between the different phases (e.g. deformable interfaces,
coalescence processes) without having to track the evolution of a deformable interface
in complex geometries, in contrast to volume of fluid (Hirt & Nichols 1981; Huang
et al. 2005) or level set methods (Osher & Sethian 1988).

For this work, we use the multi-component Shan–Chen (S–C) method for
immiscible fluid flow (Shan & Chen 1993; Shan & Doolen 1995). This model has
been applied successfully to the study of capillary instabilities (Hagedorn, Martys
& Douglas 2004) and wetting properties in both static and dynamic settings for
both two-dimensional and three-dimensional geometries (Kang, Zhang & Chen 2005;
Huang et al. 2007). Furthermore, the implementation of no-slip surfaces on the solid
matrix is straightforward, it is accomplished by a reflection of the incoming particle
distribution function on solid nodes (bounce-back method), and favours this model for
multi-component fluid flow application in porous media. For example, the S–C scheme
has been applied to invasion percolation processes and the determination of relative
permeabilities for packed sphere as well as more complex natural geometries (Martys
& Chen 1996; Olson & Rothman 1997; Sukop & Or 2003; Pan, Hilpert & Miller
2007; Schaap et al. 2007; Sukop et al. 2008; Boek & Venturoli 2010). A few studies,
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however, underline a lack of flexibility and accuracy of the method when fluids with
different viscosities are investigated (Chin, Boek & Coveney 2002; Grosfils, Boon,
Chin & Boek 2004).

For the case of the S–C binary mixture model, f nw,eq
i and f w,eq

i are defined by

f σ,eq
i (x, t)= wiρσ

[
1+ vi ·ueq

σ

c2
s

+ (vi ·ueq
σ )

2

2c4
s

− ueq2

σ

2c2
s

]
, (3.3)

where cs is a constant characteristic of the lattice topology called speed of sound
and σ = nw,w. The density and momentum for each component σ are defined by
ρσ =

∑
if
σ
i and ρσuσ =

∑
ivif σi ·u

eq
σ in (3.3) is determined by the relation

ueq
σ =

∑
σ ρσuσωσ∑
σ ρσωσ

+ Fσ
ωσρσ

, (3.4)

where Fσ = Fcoh
σ + Fads

σ + Fb
σ is a sum over the fluid–fluid and fluid–solid interaction

forces, Fcoh
σ are the cohesion forces responsible for phase separation and surface

tension, Fads
σ are the adhesion forces between the solid boundaries and the fluids, and

Fb
σ are the external body forces.
In the S–C method the interaction force between the different phases (the cohesion

forces) is given by

Fcoh
σ (x, t)=−ρσ (x, t)Gcoh

∑
i

wiρσ̄ (x+ vi1t)vi, (3.5)

where σ and σ̄ are, respectively, the first and second fluid phases, Gcoh is a free
parameter that controls the surface tension between the two fluids and ρ is the density
of the fluid.

Similarly, the adhesion force between particles of the fluid σ and the solid boundary,
can be calculated with

Fads
σ (x, t)=−ρσ (x, t)Gads

σ

∑
i

wisσ̄ (x+ vi1t)vi, (3.6)

where the solid nodes are represented as a phase with constant density s. Gads
σ

determines the strength of the interaction between particles of species σ and the
solid boundary, and, as a consequence, governs the wetting properties of the fluid.

Body forces can be introduced with

Fb
σ (x, t)=1ρσg, (3.7)

where g is the body force per unit mass. The body force term can be used to
implement buoyancy force effects due to density difference between different phases
(which in our calculations greatly exceed thermal expansion effects). The local density
and velocity of the multiphase mixture can be respectively calculated with

ρ tot =
∑
σ

ρσ , utot = 1
ρ tot

[(∑
σ

∑
i

f σi vi

)
+ 1

2

∑
σ

Fσ

]
. (3.8)

For three-dimensional calculations, we use a lattice topology with 19 velocities for
both fluids (the so-called D3Q19 lattice). In the D3Q19 lattice, the velocities vectors
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linking neighbour nodes vi and weights wi are given by

vi =


(0, 0, 0), i= 0,
(±1, 0, 0), (0,±1, 0), (0, 0,±1), i= 1–6,
(±1,±1, 0), (±1, 0,±1), (0,±1,±1), i= 7–18,

(3.9)

w0 = 1/3, w1–6 = 1/18, w7–18 = 1/36. (3.10)

The speed of sound cs for this lattice is equal to
√

1/3.

3.3. Pure substance melting
Our study focuses on modelling the exchange of heat between the solid, wetting
and non-wetting phases. For simplicity, we assume that the wetting fluid and the
fertile solid are two phases of the same pure substance. The enthalpy conservation is
modelled with a single relaxation time LB passive scalar approach (Chopard, Falcone
& Latt 2009). The algorithm for the evolution of the enthalpy (temperature and melt
fraction) is similar to (3.1). We define a new set of particle distribution functions
gi evolving according to (3.1). The proper choice of equilibrium distribution for an
advection–diffusion process is

geq
i = siT

(
1+ 1

c2
s

ei ·utot

)
, (3.11)

where ei and si are the lattice velocities and weights specific for this model. The
enthalpy is defined by H = cT+flLf , where c is the specific heat, T is the temperature,
fL is the local liquid fraction (0 6 fL 6 1) and Lf is the latent heat of fusion of the solid
phase. Heat is advected with the local fluid velocity utot (see (3.8)), and diffuses with
diffusion coefficient κ = c2

s1x2 (1/ωh − 0.5) /1t, where ωh is the relaxation frequency
similarly to (3.1) .

We assume that the thermal diffusivity for the solid and wetting fluid is identical
and we impose a constant diffusivity ratio ξ = κw/κnw = 7, where κw and κnw are the
thermal diffusivities for the wetting and non-wetting phases, respectively. The choice
for this thermal diffusivity ratio is arbitrary, but in the present study, it is motivated
by the application where hot volatiles exsolved from a new injection of magma rise
through a colder and more crystal-rich magma chamber, which has been hypothesized
to play an important role in the thermal evolution of magmatic systems in the shallow
crust (Bachmann & Bergantz 2006; Huber et al. 2010)

Based on the enthalpy method (Patankar 1980), we model the pure substance phase
change between the fertile solid fraction and the wetting fluid by introducing a source
(crystallization) or sink (melting) term Ξi as in Huber et al. (2008). The temperature
and the local enthalpy are obtained respectively as

T(x, t)=
∑

i

= gi(x, t), H (x, t)= cT(x, t)+ Lf fl(x, t − 1). (3.12)

In the melting algorithm, once H (x, t) is obtained, it is used to calculate the new
melt fraction fl at time step t:

fl =


0 H <Hs = cTm,

H −Hs

Hl −Hs
Hs 6 H 6 Hs + Lf ,

1 H >Hs + Lf .

(3.13)
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In (3.13) Hl and Hs correspond to the enthalpy of the liquidus and solidus
respectively. Using this framework, Ξi is calculated with

Ξi = si
Lf

c
(fl(x, t)− fl(x, t − 1)). (3.14)

In our three-dimensional calculations, we use a seven-velocity lattice (D3Q7), for
which cs = 1/4, and the discrete velocities ei and weights are

ei =
{
(0, 0, 0) a= 0,
(±1, 0, 0), (0,±1, 0), (0, 0,±1) a= 1− 6,

(3.15)

s0 = 1/4, s1 = s2 = s3 = s4 = s5 = s6 = 1/8. (3.16)

3.4. Validation
Our numerical model has been constructed incrementally and combines well-
established algorithms, e.g. the Shan–Chen model for multiphase flows, with numerical
models we developed and published recently, e.g. the advection–diffusion model with
pure substance melting (Shan & Chen 1993; Huber et al. 2008). The nonlinearity of
the pore-scale dynamics of multiphase flows in a slowly dissolving porous medium
prevented us from directly comparing the model to either analytical solutions or
laboratory experiments. The lack of published results for laboratory experiments
investigating the effect of matrix dissolution on the evolution of capillary fingers
prevents a comparison with our numerical results: this issue can be explained by
the difficulty of designing suitable experiments. First, as our results show (see next
section), the dissolution rate has a strong influence on the overall evolution of the
multiphase flow. Natural applications are generally characterized by slow dissolution
processes, such as, for example, the thermal evolution of crystal-rich magma bodies
(crystal mush) in the shallow crust during the buoyant invasion of hot volatiles
exsolved by new injections of magma (St < 0.1). In that context, the monitoring of the
flow field at the pore scale during scaled experiments (at least in terms of dissolution
rates St), is challenging. Our validation methodology is therefore restricted to testing
the different components (melting, multiphase fluid dynamics) of the numerical model
individually on simpler problems. We present below a list of benchmark calculations
our model was tested with, and, when necessary, refer to published results for well-
established algorithms (the Shan–Chen multiphase model).

Huber et al. (2008) extended the model of Jiaung, Ho & Kuo (2001) for conduction
melting to the problem of melting by both advection and diffusion. The algorithm has
been benchmarked, first, with the Stefan problem for one-dimensional diffusion, where
numerical solutions can be compared to the analytical solution found by Neumann.
Figure 3 shows a comparison of the propagation of the melting front and snapshots
of temperature profiles with the analytical solutions for different (dimensionless)
thermal diffusivities. Lower dimensionless diffusivities yield a more accurate result
as they are equivalent with calculations with shorter time steps. Huber et al. (2008)
also successfully tested the numerical model for melting in a square, initially solid
enclosure, where natural convection is initiated. This problem has been the subject
of laboratory experiments (Bénard, Gobin & Martinez 2006), and the focus of a
theoretical study by Jany & Bejan (1988). Moreover, different studies used this
problem as a numerical benchmark for moving boundary calculations (see for example
Bertrand et al. 1999; Bénard et al. 2006). Figure 4 shows an example of the temporal
evolution of the melting enclosure (first two rows, heated well on the left) and a
snapshot to reveal the temperature, melt fraction and velocity field in the partially
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FIGURE 3. Comparison of the melting front position and temperature profiles between
the melting LB model (crosses) and analytical solutions (solid curves) for three thermal
diffusivities (κ , in lattice units) with Stefan number St = 1 (second row) and St = 10 (third
row). Time is made dimensionless in order to compare the sensitivity of the model to the size
of the time steps. From Huber et al. (2008).

molten enclosure. Huber et al. (2008) showed that their numerical model was in good
agreement with the scaling relationships of Jany & Bejan (1988), with experimental
results (Bénard et al. 2006) and with results obtained with front-tracking numerical
models (Bertrand et al. 1999). For more details about the accuracy and stability of the
model, readers are referred to Huber et al. (2008).

The multiphase flow model we chose, the Shan–Chen model, has been used
extensively over the last decade. It has been tested successfully for both static and
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FIGURE 4. (Colour online) Example of natural convection melting in a square enclosure. The
left wall is kept at constant temperature (above the melting temperature of the solid) and the
whole enclosure is solid initially. Convection develops and leads to the propagation of the
melting front to the right (faster at the top of the enclosure because of convection). These
calculations have been benchmarked with other numerical models, laboratory experiments
and scaling relationships; for more details see Huber et al. (2008). l.u., lattice units.

dynamical problems (Kang et al. 2005; Huang et al. 2007). In figure 5(a), we show
a two-dimensional static validation of the model with the Laplace–Young law, which
predicts a linear relationship between the pressure difference across the fluid–fluid
interface and the radius of the bubble. Figure 5(b) shows the dependence of the
surface tension on the free parameter Gcoh in two dimensions. Similar validations for
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FIGURE 5. (a) Pressure drop 1P across the bubble interface as a function of 1/R (where
R is the bubble radius) for a two-dimensional case. The bubble is placed in the middle of a
100 × 100 numerical domain. This graph shows that the Shan–Chen algorithm successfully
reproduces the Laplace–Young law. (b) Surface tension λ in lattice units as a function of the
particle repulsion strength parameter Gcoh.

two- or three-dimensional static problems with the Shan–Chen model can be found in
several publications (see for example Huang et al. 2007).

The Shan–Chen model has often been favoured over other lattice Boltzmann
multiphase flow models for studying flows in complex geometries (porous media)
owing to its simplicity when enforcing no-slip conditions at the fluid–solid interface.
Several recent studies (see for example Auzerais et al. 1996; Coles et al. 1998; Schaap
et al. 2007; Sukop et al. 2008) compared their numerical calculations with digital
images of natural samples obtained by X-ray tomography and found a good agreement
at both the microscale (location of the fluid phases) and the macroscale (capillary
pressure-saturation conditions).

3.5. Boundary conditions
Proper inlet–outlet boundary conditions for immiscible fluid flows have not yet been
developed in the framework of the Shan–Chen method. Velocity boundary conditions
for multiphase immiscible fluids are problematic, because of the dynamical coupling
between both fluids through surface tension. A suitable velocity boundary condition
requires a way to impose a velocity (or velocity gradient) on each fluid that does not
introduce spurious effects through the viscous drag and surface tension between the
two fluids. The challenge becomes even more daunting in a dynamical system where
the conditions evolve at the boundary. For pressure-driven flows, injection and outlet
conditions can, however, be obtained with pressure boundary conditions (Zou & He
1997).

Pressure-driven condition is a convenient assumption in many industrial applications.
In nature, however, multiphase flows in porous media can also be buoyancy-driven,
which is the case we focus on in this study. Our choice of boundary conditions follows
Latt et al. (2004): the invading fluid is injected by creating a bubble inside an apposite
region of the numerical domain (injection chamber). The injection of the invading
fluid is performed by imposing a local density value

∑
if

nw
i with momentum

∑
if

nw
i vi

equal to zero (bubble at rest initially). The newly created bubbles rise away from
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their injection site because of their positive buoyancy (a buoyancy force is applied
to the non-wetting phase only, as in (3.7)). The injection rate of non-wetting fluid is
determined by the volume of each bubble and the period between successive injections.
The position of the injection site, the period between injections and the volume of the
bubbles can be varied over a single calculation to obtain a pseudo-random injection
process.

Initially, as the injection chamber is capped by a region of low porosity (see
figure 6), a layer of non-wetting fluid can form at the bottom of the low-porosity
region. In this non-wetting fluid layer (see figure 6), the pressure increases until it
exceeds a critical capillary pressure and the non-wetting fluid invades the porous
medium (see figure 7a).

The injection of non-wetting fluid in the inlet chamber can, however, be prone to
numerical instabilities and has to be conducted carefully. In order to avoid numerical
instabilities, we use the following procedure: during the first half of the injection
process, the local density of the non-wetting fluid is increased linearly with time until
a fixed maximum value of density is reached. During the second half of the period
of injection, the local density is kept constant. This allows us to slowly increase
the magnitude of the cohesion force ((3.5); note that the magnitude of the cohesion
force (3.6) is proportional to density) and slowly build up the interface of separation
between the two immiscible fluids. The temperature of injected bubbles is initially at
equilibrium with the temperature in the injection chamber, equal to T0, and above the
melting temperature of the fertile solid fraction.

The outlet region is located at the top of the porous medium (see figure 1). Once
the non-wetting phase reaches the outlet, its density and enthalpy are absorbed
exponentially over 70 nodes above the porous medium. The distance over which
density and temperature are decaying and the strength of the decay (decay constant)
at the outlet are set by the optimal parameters (e.g. exponential decay rate, size of
outlet), where the effect of the outlet boundary is the smallest on the different field
variables upstream (temperature, pore-scale velocity). These optimal parameters were
found numerically.

4. Results and discussion
The injection of a non-wetting fluid phase in a saturated porous medium has been

the subject of numerous studies over the last half-century. The different dynamical
regimes that describe the distribution of the invading fluid phase (here non-wetting,
i.e. capillary instability, viscous fingering instability and stable front propagation) are
generally cast in terms of three dimensionless numbers (Lenormand et al. 1988; Ewing
& Berkowitz 1998; Blunt 2001):

Ca= qnwµnw

R2γ
capillary number, (4.1)

Bo= 1ρgR2

γ
Bond number, (4.2)

λ= µnw

µw
viscosity ratio, (4.3)

where the indices w, nw respectively refer to the invading non-wetting and defending
wetting fluids, µ is the dynamical viscosity, γ the surface tension between the
two fluids, 1ρ their density difference, qnw the volume of invading fluid injected
in the porous medium per unit time and R a characteristic length scale of the
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 6. (Colour online) Bubble formation at the injection chamber. Bubbles of non-
wetting fluid (density contour in red/dark grey) are periodically generated at different
locations inside an inlet region. The latter is capped by the porous medium (solids fraction in
light grey). The non-wetting bubbles ascend buoyantly to the bottom of the porous medium. If
the permeability contrast between the inlet and the porous medium is large, bubbles coalesce
and form a capillary layer of non-wetting fluid.

system, hereafter set to the average pore radius. In § 2, we showed that two more
dimensionless numbers are introduced for reactive flows: the Stefan number, which
gives the ratio of the amount of enthalpy associated with the dissolution/melting of
the matrix to the amount of enthalpy stored in the system, and the ratio of reactant
diffusivity for the two fluid phases. The following discussion applies to any type
of reactive flow where the reaction is linear. To simplify the notation, we assume
hereafter a thermal problem where the reactant corresponds to the excess enthalpy
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Injection chamberInjection chamberInjection chamber

Non-wetting flux Non-wetting flux Non-wetting flux

(a) (b) (c)

FIGURE 7. (Colour online) The porous medium, initially saturated with a wetting fluid
(transparent here), is invaded by the buoyant non-wetting fluid injected at its base. The
initial porosity of the porous medium is 0.41. The buoyant non-wetting fluid is depicted
in red/dark grey. (a–c) The build-up of a capillary layer before the pressure in the stalled
non-wetting-fluid exceeds a critical capillary pressure. In (c), we observe that the thickness of
the capillary layer at the base of the porous medium decreases before reaching a quasi-steady
state (for low dissolution rates) when the non-wetting phase has reached the outlet, where the
non-wetting phase is absorbed with a constant rate in time.

carried by the invading phase. Thus

St = c1T

Lf
Stefan number, (4.4)

ξ = κnw

κw
diffusivity ratio. (4.5)

In the definitions above, 1T = T0 − Tm is the temperature difference between the
injected non-wetting fluid and the melting temperature of the fraction of the matrix
susceptible to melting, c is the specific heat, and Lf is the latent heat of fusion. In
all the calculations presented here, λ and ξ are fixed to respectively 1 and 1/7. These
values are fixed to reduce the number of free parameters in this study and to ensure
numerical stability and accuracy with the present numerical method (limitation with λ).
In the following section, we explore the effect of the different dimensionless numbers
on the heat and mass transfer associated with the injection of a superheated invading
fluid. We start with the Stefan number and discuss the importance of melting on the
mass transfer of invading fluid.

4.1. The effect of the melting/dissolution (Stefan number)
Let us first define a stable capillary channel as a connected channel of the non-
wetting phase (formed by a capillary instability) that remains connected and active
for heat and mass transfer throughout the course of one of our calculations. In this
section, we discuss the stability of these non-wetting fluid channels to the partial
melting/dissolution of the porous matrix. We focus on the dynamics of capillary
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St = 0.01 St = 0.1 St = 1.0(a) (b) (c)

FIGURE 8. (Colour online) Comparison between the non-wetting phase distribution in three
calculations with different melting efficiencies (St). At low St (a), channels of non-wetting
fluid are well-defined and stable. As the melting efficiency increases (increasing St), channels
become less stable (b, c) and eventually break into slugs or bubbles. Note in transparency
the decrease in crystallinity (increase in porosity) in the lower part of the texture because of
melting.

channels as they control the heat transfer beyond the melting front associated with heat
diffusion and host the majority of the mass transport of non-wetting fluid through the
porous matrix.

Although elongated channels of fluid embedded in an unbounded and immiscible
viscous or inviscid ambient fluid have been shown to be unstable to capillary forces
(see for example Newhouse & Pozrikidis 1992; Eggers 1993; Papageorgiou 1995;
Chen & Steen 1997; Day, Hinch & Lister 1998; Zhang & Lister 1999; Sierou & Lister
2003; Quan & Hua 2008), the effect of confining solid boundaries and steady flow
through the channel have been suggested to slow down the breakup of the channel
into bubbles or slugs (Tomotika 1935; Hagedorn et al. 2004). In a dynamical setting
such as when capillary channels invade a porous medium, however, these structures
are known to be able to remain stable over the duration of laboratory or numerical
experiments as long as the injection rate of the invading fluid remains constant. One
could therefore argue that the confinement of the two fluid phases in a porous medium
and a steady injection rate of invading fluid that can sustain a high local saturation
of invading fluid in the channel are able to stabilize the channel at least over much
greater time scales.

The topology of the porous medium, and therefore of the buoyancy-driven capillary
channels of non-wetting fluid, are complex (see figure 13). Our calculations clearly
show the influence of the Stefan number on the stability of channels (figure 8). In
order to better understand qualitatively the role of melting/dissolution in the dynamics
of the invading fluid, we assume a much simpler conceptual model where the non-
wetting phase occupies a perfect cylindrical channel at the centre of a cylindrical
tube wetted by the other fluid (axisymmetrical annular flow). Figure 9(a) shows
the simplified geometry in two dimensions, and defines some useful notation. We
first assume a multiphase axisymmetrical flow with constant radius Rg (radius of the
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FIGURE 9. (Colour online) Conceptual model of axisymmetrical annular flow. (a) The
steady-state flow expected when the channel as a constant radius. In (b) we see that, when a
section of the channel is wider (R′1 > R1), mass conservation imposes that the flow is slowed
down in the wider region (see (4.11)). The varying radius introduces curvature at the interface
between the non-wetting and wetting fluids and, together with the longitudinal stretching of
the channel above the wider region, destabilizes the channel. See the text for more details.

non-wetting fluid) and R1 for the wetting fluid. The solution to this annular flow is

u(r)=


− 1

4µw

dp

dz
(R2

1 − r2) Rg 6 r 6 R1,

− 1
4µnw

dp

dz
(R2

g − r2)− 1
4µw

dp

dz
(R2

1 − R2
g) 0 6 r 6 Rg,

(4.6)

where z is the direction along the axis of the cylinder, dp/dz is the dynamical pressure
gradient causing the flow and µnw, µw are respectively the viscosity of the non-wetting
and wetting fluid. The angle θ between the velocity gradient in the radial direction at
Rg is related to the viscosity ratio λ,

θ = atan

(
du

dr

∣∣∣∣
R+g

)
− atan

(
du

dr

∣∣∣∣
R+g

1
λ

)
, (4.7)

where λ= µnw/µw and R+g is the limit Rg + ε > Rg for ε→ 0.
In order to see how the non-wetting fluid channel behaves when a section of the

confining solid is subjected to melting, we assume that the radius R1 is perturbed to a
new radius R′1 > R1 over a depth 1z. To simplify the discussion, we assume that only
a small subregion of the channel was affected by melting (because of heterogeneous
solid melting temperatures for example, as in our more realistic calculations) and that
the axisymmetry is conserved. Moreover, we will assume that the region 1z over
which melting increased R1→ R′1 > R1 is deep compared to the depth over which the
gradients dR′1/dz are significant and that a Hagen–Poiseuille flow can approximate the
flow solution in 1z far away from the boundary of 1z. In this case, at steady state, the
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solution for the flow within 1z is

u′(r)=


− 1

4µw

dp′

dz
(R′21 − r2) R′g 6 r 6 R′1,

− 1
4µnw

dp′

dz
(R′2g − r2)− 1

4µw

dp′

dz
(R′21 − R′2g ) 0 6 r 6 R′g,

(4.8)

where the prime denotes variables that have been perturbed by a melting event that
lead to the new configuration shown in figure 9(b). After melting, mass conservation
for both fluids requires that

qw = π
∫ R1

Rg

u(r)r dr= π
∫ R′1

R′g
u′(r)r dr, (4.9)

qnw = π
∫ Rg

0
u(r)r dr= π

∫ R′g

0
u′(r)r dr. (4.10)

We can therefore solve for the new pressure drop dp′/dz and non-wetting channel
radius R′g as a function of the change in radius due to melting R1 → R′1. The
non-wetting channel radius in the wider part of the conduit is then given by

R′g =
√√

4AC + B2

2A
− B

2A
, (4.11)

where

A= R2
1

[
2
(

1
4
− λ

2

)
(R2

1 − R2
g)−

λ

2
R2

g

]
, (4.12)

B= R′21

[
R4

g

(
1
2
− λ

2

)
+ λR4

1

]
, (4.13)

C = 2R′41

[
R4

g

(
1
4
− λ

2

)
+ λ

2
R2

1R2
g

]
. (4.14)

Figure 10 illustrates the dependence of the capillary channel radius in the wider
conduit (R′g) as a function of the change in conduit radius R′1. For R′1 > R1, the channel
becomes wider (R′g > Rg). This results from the fact that melting pushes the no-slip
boundary at R1 further away and therefore decreases the shear stress at the boundary
when R′1 − R′g > R1 − Rg.

As qnw ∝ UnwR2
g, where Unw is the average velocity of the non-wetting phase in

the capillary channel, we expect that the average flow velocity in the wider region is
decreased by a factor (Rg/R′g)

2. This induces longitudinal gradients of velocity ∂u/∂z
in the vicinity of 1z, where the flow is slowed down when the non-wetting phase
approaches the widening of the conduit. It leads to an accumulation of non-wetting
fluid. The stretching of the channel above the wider region and the longitudinal
perturbation of radius Rg with z around 1z are expected to favour capillary instabilities
(such as Rayleigh–Plateau instabilities) that can cause the breakup of the channel
into slugs or bubbles of non-wetting fluid. We tested this conceptual model with
a numerical calculation, where the temperature of the non-wetting fluid is raised
instantaneously in an axisymmetric annular flow after a steady-state flow is reached.
The solid walls are constructed similarly to the conceptual model (figure 9), where
only a narrow band at the centre is allowed to melt. In figure 11, we observe that
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FIGURE 10. (Colour online) Results from the simplified analytical axisymmetric annular
flow model shown in figure 9. The results illustrate how the non-wetting fluid channel adjusts
(after reaching a new steady state) to a change in radius R1 for different values of viscosity
ratio λ.

only a small amount of melting (∼1 %) is required for instability (oscillations at the
interface between the two fluids) and leads to the breakup of the capillary channel.

In all calculations, the injection rate of buoyant non-wetting fluid remains constant
during a single run. The local increase in porosity associated with melting directly
affects the local non-wetting phase saturation Snw,

dSnw

dt
= 1

Vφ(0)
dVnw

dt
− V (0)

nw

Vφ(0)2
dφ
dt
, (4.15)

where the superscript 0 refers to an initial condition, V is the reference volume of
porous medium, Vnw is the volume of non-wetting fluid in V and φ is the porosity.
Equation (4.15) shows that when the increase of volume of non-wetting fluid induced
by the longitudinal reduction of flow velocity associated with melting does not keep
up with the porosity increase, the local saturation of non-wetting fluid decreases, the
capillary channel is unstable and eventually breaks. The two time derivatives in (4.15)
introduce two competing time scales, τnw ∼ 1z[(R′2g − R2

g)/R
2
g]/Unw for the volume

change of non-wetting fluid and a time scale for the porosity evolution (melting)
τm ∼ R2

1/(ζ
2(St)κeff ). In the definition of τm, ζ(St) is an implicit and monotonically

increasing function of St (see (4.20)) and κeff is a multiphase radial thermal diffusivity.
For an axisymmetric annular flow, assuming a temperature drop across the pipe radius
R1 of 1T =1Tnw +1Tw, we get

knw
1Tnw

Rg
∼ kw

1Tw

R1 − Rg
, (4.16)

where ki is the thermal conductivity of phase i and 1Ti is the radial temperature drop
in the fluid i. The effective multiphase thermal diffusivity in this simplified geometry
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Time

Melting

FIGURE 11. (Colour online) Snapshots of a calculation where an axisymmetric annular flow
(Snw = 0.27) is initially at steady state. The boundary conditions are periodic. The solid walls
(in blue/outer dark layer) bounding the annular flow are made of the refractory solid fraction
(no melting possible) except for a narrow band at the centre of the conduit where the solid can
melt. After reaching a steady state, the temperature of the non-wetting fluid (in red/darkest,
most central shading) is instantaneously raised above the melting temperature of the centre
band of fertile solid. As soon as melting occurs, a Rayleigh–Plateau instability is initiated
(the capillary channel oscillates), which leads to the breakup of the channel. The amount of
melting necessary to disrupt the channel was found to be only 1 % of the original sample
volume.

becomes

κeff ∼ κnw

(
1− 1Tw

1T

)
R1

Rg
, (4.17)

where 1Tw is given by

1Tw ∼ κnwcnwρnw1T(R1 − Rg)

κwρwcwRg + κnwcnwρnw(R1 − Rg)
. (4.18)

If the τm < τnw, i.e. the Stefan number is large or the injection rate is small, melting
is expected to reduce the local saturation of the non-wetting phase, which at some
point will lead to the breakup of the capillary channel; on the other hand, if τm > τnw,
then Snw decreases only slowly and the channel remains stable for a longer duration.

Our discussion of the effect of melting on the breakup of capillary channels
in porous media has been limited so far to isochoric (no volume change) phase
changes during melting. Most substances (except, for example, water) exhibit a volume
increase upon melting. In this particular case, we hypothesize that the volume increase
associated with the phase change will promote the destabilization of the channel as the
local overpressure is expected to accelerate the pinch-off process.
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4.2. Injection rate, capillary number
Lenormand et al. (1988), Ewing & Berkowitz (1998) and Blunt (2001) discussed the
importance of the injection rate of an invading fluid in the generation of capillary
or viscous fingering instabilities. They showed that for viscosity ratios close to unity
(λ ∼ 1), corresponding to our calculations, instabilities originate from capillary effects
as long as the injection rate or Ca does not exceed a value of ∼1. Our calculations
are set with a fixed viscosity ratio λ = 1, a fixed Bond number Bo ∼ 0.1 and over a
range of capillary numbers Ca ∼ 10−4 − 10−1, where the latter two numbers use the
initial average pore radius as the reference length scale. A major difference between
our calculations and typical capillary instabilities lies in the fact that, in a melting
environment, the dimensionless numbers St , Bo and Ca are evolving with time because
(i) the non-wetting phase loses heat to the wetting fluid and to melt the porous matrix,
and (ii) the average pore radius evolves with time as a result of melting. In this section
we briefly discuss how melting affects Ca.

A time-dependent definition of the capillary number for the injection of the invading
fluid includes the evolution of the average radius size of the relevant pores, which
are bound to increase because of melting. Using the same model as above, where the
multiphase flow through the porous medium is simplified to an annular flow through a
vertical pipe, we assume that melting increases the radius of the pipe at a certain level
of the porous media according to

R1(t)= R(0)1 + 2ζ
√
κeff t. (4.19)

Assuming a simplified heat transfer problem in a cylinder (Carslaw & Jager 1959), ζ
becomes

ζ 2 exp(ζ )Ei(−ζ 2)+ St = 0, (4.20)

where Ei is the integral exponential function. Figure 12(a) shows the evolution of
Ca versus time (normalized using the Fourier number Fo ≡ κeff t/R2

1) for different St
for this idealized melting problem. Figure 12(a) illustrates that, although the injection
rates of non-wetting fluid qnw remain constant for each calculation, Ca decreases
faster for greater St . In the pore-network calculations of Lenormand et al. (1988), the
invading fluid flows in response to the injection rate solely (no buoyancy) and capillary
instabilities percolate through the porous medium as long as Ca remains finite. For
buoyant flows, however, the situation is different. If the mass flow rate of the buoyant
non-wetting phase locally exceeds the injection rate (which is possible at low Ca
or high Bo), capillary channels can break into slugs disconnected from the injection
region.

We conducted calculations with various injection rate values, and hence Ca, for
fixed Bo = 0.1, (i) to test if capillary channels were able to grow, and (ii) to
measure the characteristic non-wetting fluid velocity (defined as ∼1/2 of the
maximum velocity) in the main capillary channel. The results are summarized in
figure 12(b). We see that below a given value of injection rate, corresponding here
to a critical Cacr ∼ 3 × 10−3, the non-wetting phase rises through the porous medium
as disconnected slugs or bubbles. All the calculations reported in the next sections
have been performed with an initial Ca > Cacr in order to observe the dynamics
of capillary channels; however, as discussed above (see figure 12a), Ca decreases
with time because of melting. We note that the simple Ca evolution trends shown in
figure 12 assume a constant St , which is an obvious overestimate of the evolution of
the melting efficiency as the superheat in the non-wetting phase decreases with time
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FIGURE 12. (Colour online) Simplified temporal (dimensionless: see text) evolution of the
capillary number Ca for the non-wetting fluid injection (a). Ca is expected to decrease with
time even for constant injection rate because of its dependence on the channel radius (the
radius increases because of melting). The rate of Ca decrease is controlled by the Stefan
number St (see (4.20)). As Ca decreases, the non-wetting fluid saturation Snw decreases (at
constant injection rate) and channels are no longer stable. The threshold value here is obtained
from calculations where we vary the injection rate at constant Bond and Stefan numbers.
Melting (St) and buoyancy (Bo) start to prevent the growth of connected channels in the
porous medium if the injection rate or Ca becomes to small (b). The vertical axis in (b)
represents the aspect ratio of isothermal contours in non-wetting fluid channels (set at a
dimensionless temperature of 0.1, 0=melting temperature and 1= injected non-wetting fluid
temperature).

and distance away from the injection point (due to heat absorbed by the wetting fluid
and the solid matrix).

To summarize, the competition between the injection rate of non-wetting buoyant
fluid (Ca), buoyancy (Bo) and superheat (St) controls the stability of capillary channels
during our calculations. We observe that for large amounts of superheat or large
buoyancy and small injection rates, channels can be destabilized and break into slugs
under the action of capillary forces. Moreover, the dimensionless numbers describing
the balance between injection of non-wetting fluid, buoyancy and capillary forces
vary temporally and spatially because of localized melting. For instance, Ca decreases
with time locally because of the evolution of the channel radius with melting. The
superheat carried by the non-wetting phase (which is responsible for melting deep
in the porous medium) is gradually absorbed by the surrounding melt and the latent
heat of the matrix. As a result, the melting efficiency (St) decreases with time and
also with distance from the injection region. At large St , we observe (figure 8) that
melting inhibits the formation and stability of capillary channels; however, as time
progresses and at greater distance from the lower boundary (injection region), St is
significantly reduced and a situation similar to low St number regimes (growth of
long-lasting capillary channels) is recovered. This observation encourages us to focus
on calculations at intermediate-to-low St (<1), where capillary instabilities control the
heat and mass flux associated with the invading fluid, because they are also consistent
with the mode of heat and mass transfer at higher melting efficiencies beyond a small
buffer region (a few pore radii above the injection region in our calculations) where
melting absorbs most of the superheat.
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FIGURE 13. (Colour online) Comparison of two calculations at St = 0.1 with different local
Pe values (local here refers to the Péclet number measured in the main capillary channel:
see text for clarifications). We show (a) density contours for the non-wetting fluid, (b) the
normalized excess enthalpy carried by the buoyant non-wetting fluid, (c) an isotherm (at
0.1) and (d) the normalized velocity magnitude of the non-wetting fluid. We observe that,
for Pe = 7, the melting front is more localized to the region where the front propagates by
diffusion from the inlet region, whereas, for Pe = 42, the heat transfer penetrates deeper into
the porous medium.

4.3. Reactant transport
In this section, we discuss the non-wetting fluid mass and associated heat transport in
capillary channels. We define a local Péclet number to quantify the ratio of advective
to diffusive reactant/heat transport in capillary channels,

Pe= ul,nwRl

κeff
, (4.21)

where the subscript l refers to local, i.e pore-scale definitions, Rl is a characteristic
pore radius in the capillary channel, ul,nw is a characteristic non-wetting phase flow
velocity in the channel (usually ∼50 % of the maximum velocity). We emphasize that
this definition of the Péclet number measures the relative contribution of reactant
transport in capillary channels at the pore scale, and, as such, is not a direct
macroscale measure of the reactant/heat transport in the porous medium. Figure 13
illustrates typical results with snapshots showing the distribution of mass, excess
enthalpy, temperature (isotherm contour (T−Tm)/Tm = 0.1) and velocity magnitude we
obtain at low Stefan number (St = 0.1). The two rows allow us to compare visually
the behaviour of our results for two different local Péclet numbers.

In order to quantify the penetration of non-wetting phase and heat in the porous
medium vertically from the injection region (inlet), we discretize the porous medium
in N (generally using N = 6) equal-sized horizontal sections (see figure 14a). The
number of sections (N), and therefore the thickness of each layer (50 calculations
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FIGURE 14. (Colour online) The porous medium is sliced into N (here N = 6) layers to
better track the temporal and spatial evolution of the melting front in the porous medium (a).
(b) An example of normalized porosity evolution (defined in (4.22)) for the different layers,
where time is made dimensionless using the thermal diffusion (for non-wetting phase) time
scale. (c) Temporal evolution of mi defined in (4.23). These functions allow us to track the
migration of the melting front and to assess the depth of penetration of the heat transfer into
the porous medium as a function of time.

point along the vertical dimension for N = 6) is chosen to be large enough to
provide robust statistics about the temporal evolution of the average porosity and
gas saturation in each layer and small enough to gain a better understanding of the
vertical distribution of melting and gas transport. Because of the random distribution
of grains/crystals with a melting temperature greater than the maximum temperature
of the system (corresponding to ∼21 % of the volume of the sample), each layer
is expected to have a different amount of these refractory phases (see figure 2). To
compare the amount of melting in each layer, we normalize the porosity to

φ∗(zi, t)= φ(zi, t)− φmin,i

φmax,i − φmin,i
, (4.22)

where zi references the position of the layer (zi = 1, 2, 3, . . . ,N from the lowest to
the top layer), φmin,i and φmax,i are respectively the initial and maximum porosity
(1-refractory phase fraction) of the layer (figure 14b).

One would expect that at low Pe, when heat transfer is dominated by diffusion from
the inlet region, melting would be, at least at early times (t� (N ∗ dz)2/κeff , where
dz is the distance between zi and zi−1), confined only to the lower layers. In contrast,
at high Pe, when channels of non-wetting fluid are developed, the penetration depth
of heat and melting in the porous medium is expected to grow with increasing Pe.
To compare the contemporary evolution of the porosity in each layer and assess the
localization of melting vertically, we introduce

mi(t)= (φ∗(zi, t)− φ∗(zi+1, t)). (4.23)

The mi are generally positive functions which initially grow as the lower layer of the
pair (i) experiences initially more melting. They reach a maximum when the melting
rate of the two layer is comparable and finally decrease monotonically once the
melting front is shifted upwards (higher than position zi): see figure 14(c). The height
of the maximum of mi is controlled by the duration over which melting is dominantly
occurring in the layer i and only marginally in i + 1 and therefore can be used to
quantify the amount of vertical localization of the region over which melting occurs.
As the most rapid melting occurs initially in the lowermost layer, when the superheat
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FIGURE 15. (Colour online) (a) Comparison of a melting profile from our calculations with
the simple scaling law of (4.27). Panel (b) shows that the argument of the exponential melting
decay with depth σ is proportional to Pe, as expected from the scalings.

carried by the non-wetting phase is maximal and the porous medium remains fertile to
melting, the maximum values of mi(t), max(mi), are expected to decrease away from
the inlet region (with increasing i) with a few exceptions due to the actual distribution
of refractory solids in each layer.

Assuming again a simple geometry consisting of a cylindrical pipe of radius R
with fixed wall temperature (here corresponding to the melting temperature of the
fertile solid fraction Tm), and a steady fluid flow entering at temperature T0 > Tm but
neglecting the effect of melting (latent heat absorbed and changes in pipe radius), the
mid-point (i.e. r = 0) temperature distribution along the pipe Tz is given by (Bejan
2004)

Tz(z)= Tm + (T0 − Tm) exp[−σ(z− z0)], (4.24)

where z0 is the inlet region of the pipe and σ = A/(RPe) with Pe = uR/κ and A is a
constant. We approximate the radial heat transfer out of the pipe with

qr(z)∼−keff

(
Tz(z)− Tm

R

)
. (4.25)

Assuming that the pipe wall is able to melt, and that the melting rate is low (limit of
low St), the heat flux balance at the wall determines the melting rate at the wall,

qr(z)∼ ρsLf R
dφ
dt
, (4.26)

and hence, for small St in a simplified pipe flow geometry, we should expect the
amount melting to decrease exponentially along the pipe,

φ(z> z0)∼ φ(z= z0) exp(−σ z), (4.27)

where σ ∼ 1/Pe. Figure 15(a) shows an example of a porosity profile (averaged
over each of the horizontal layers) for a calculation with initially St = 0.1 compared
with a fit of the form exp(−σ z). We plot in figure 15(b) the dependence of the
fitting constant σ on Pe for three different Pe at St = 0.1. These results are in good
agreement with the expected results for axisymmetric pipe flows in the limit of St � 1;
even if the geometry of the conduit in our calculations is much more complex, the
flow is multiphase and the porous medium has a heterogenous distribution of fertile
and refractory grains. This analysis reveals that, for St � 1, the heat can be channelled
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FIGURE 16. (Colour online) Snapshots illustrating the dependence of the aspect ratio L/R
of isotherms in the channels on the local Pe. Panel (d) suggests that the aspect ratio L/R is
linearly proportional to Pe. The error bars are calculated from the spatial resolution of our
calculation.

vertically through the porous media ahead of the inlet over a penetration distance that
scales like Pe. For Pe� 1, the heat transfer to the wetting fluid and solid matrix
becomes predominantly radial around the main capillary channels rather than vertical
from a sub-horizontal melting front migrating upwards from the inlet.

Another way to approach the characterization of the heat penetration depth L in a
capillary channel of radius R is readily done by using the average non-wetting fluid
velocity in the channel unw and the characteristic time scale for heat loss radially by
diffusion τ ∼ R2/κeff :

L

R
∼ unwτ

R
= Pe. (4.28)

Figures 16(a)–16(c) illustrate the dependence of L on Pe; the aspect ratio of the
thermal contours in the capillary channels are plotted against Pe in figure 16(d).

The scaling relationship of (4.28) predicts that, as long as the St number is �1, the
aspect ratio of the thermal contours in the capillary channels depends linearly on Pe.
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FIGURE 17. (Colour online) Snapshots of calculations at Pe= 14, St = 0.1 taken at different
times. They show that, for low St , the aspect ratio of isotherms in capillary channels remains
approximately constant with time.

The scaling remains valid and the aspect ratio approximately constant as long as the
flow and the channel width remain roughly constant with time (see figure 17).

Further useful information on the heat transfer associated with the flux of buoyant
superheated non-wetting fluid can be extracted from the maximum values of mi for
each layers: the migration rate of the melting front. We define ti as the time in
our calculations when mi reaches its maximum value. We expect that at Pe� 1 the
heat transfer is dominated by the advective flux associated with capillary channels,
which remains mostly constant during our calculations (see figure 17). In the following
figures, time is made dimensionless using the Fourier number Fo = κnwt/R2, where R
is the average pore radius in the capillary channel. At Pe� 1, the relationship between
ti and zi is expected to be linear (see figure 18a,d,e) with a slope β proportional
to 1/Pe (figure 18b,c). In contrast, at lower values of Pe (6O(1)), the heat transfer
is dominated by diffusion from the inlet region and the power-law exponent ti ∼ zζi ,
where ζ is expected to approach the limit ζ = 2 when Pe→ 0 (figure 18d,e). We also
compare the migration of the melting front for different initial values of St , from 0.1
to 1. We observe that the migration rates are significantly different even for similar Pe.
However, if we rescale the time with St to account for the effect of melting on the
heat transfer (figure 18b), the migration rate becomes much more comparable over the
range of St at fixed Pe. The residual variability in the dimensionless migration rate at
a given Pe across the range of St can be explained by the presence, at high St , of
a largely melted buffer region next to the inlet where the initial superheat is partially
absorbed before capillary channels are stabilized.

4.4. Macroscale evolution
In this section, we discuss the evolution of the system at the scale of the porous media
sample. We focus on the evolution of two scalar fields: (i) the overall normalized
porosity, and (ii) the non-wetting fluid saturation (pore volume fraction). Because
the dynamics at high St (close to unity) is transient and evolves to St � 1 after a
buffer layer of a few average pore radii absorbs most of the superheat of the non-
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FIGURE 18. (Colour online) Using the time (dimensionless) at which the functions mi reach
a maximum, we can track the migration of the melting front. We observe (i) that St exerts
a strong influence on the front migration (see (a)), but, when the time is rescaled with St ,
results from different St calculations and identical Pe become comparable. At low Pe, melting
is dominated by heat diffusion from the inlet (see migration rate ∼Fo1/2 in (d)–(e) instead of
∼Fo). Panel (c) shows the dependence of the slope of the trends in (a) on Pe for different St .
The slope satisfies β ∼ 1/Pe, as expected.

wetting fluid, we centre the discussion on lower St (St = 0.1). Figure 19(a) shows the
normalized porosity increasing with dimensionless time in response to the amount of
superheat injected with the non-wetting fluid in the porous medium. We observe that
even for Pe> 1, at early times (small Fo), diffusive heat transfer from the inlet region
dominates and the φ∗ ∼ Fo1/2. As soon as capillary channels develop and melting
moves away from the inlet region, we observe a transition to a linear relationship
φ∗ ∼ Fo characteristic of a heat transfer dominated by advection. However, one can
easily observe that the slope of φ∗(Fo) does not depend linearly on Pe, contrary to our
discussion in the preceding section. This is because our definition of Pe is local (pore
scale) and does not apply to an effective Pe at the Darcy scale. The latter is of limited
use because the macroscale evolution of the system is strongly correlated to pore-scale
processes (capillary instabilities, reactive transport).

Figure 19(b) shows the evolution of the global non-wetting phase saturation in the
porous medium as a function of time (Fo). First, the saturation builds up as the non-
wetting phase accumulates. Second, the increase in porosity associated with melting
contributes negatively to Snw because Snw ∼ 1/φ∗. The two regimes observed in the
saturation evolution reflect the two competing processes, (i) injection of non-wetting
phase on the positive side, and (ii) melting on the negative side. A steady state was
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FIGURE 19. (Colour online) Overall evolution of the porous medium for St = 0.1 and
various local Pe. (a) The melting rate is greater for greater Pe, as expected. (b) Evolution
of the overall non-wetting phase saturation Snw. Early on the saturation increases because
of the injection; it then reaches a maximum and decreases because of melting (increase in
porosity).

not found during our calculations because of limited computational resources and the
time required to melt the solid matrix far away from the inlet and from superheated
channels.

Our calculations highlight the importance of localized transport of mass and reactant
in capillary channels during the invasion of a buoyant non-wetting fluid in porous
media. The viability of these capillary channels is increased when the ratio of mass
transport of non-wetting fluid to superheat is maximized.

5. Conclusion
Multiphase flows in porous media control to a great extent the mass, heat and

chemical balance in the vadose region. In some instances, reactants are transported by
one of the two fluid phases and influence the mass transfer when reactions affect the
flow pathways at the pore scale. The coupling between mass and momentum transport
between each phase is highly nonlinear, especially at the scale of the pore. Their
investigation requires sophisticated numerical methods. Standard numerical methods
include (i) pore-network models, where a simplified dynamics is solved at the scale of
the pores, and (ii) macroscale (Darcy-scale) models of multiphase transport where the
dynamics at the pore scale is averaged in terms of simple constitutive equations. We
remark that both methods offer several advantages in terms of computational simplicity
and possibility of investigating larger sample volumes. However, a proper account
of reactive transport and its effect on the flow transport requires a more complex
approach, where conservation equations are actually solved at the pore scale (Woods &
Farcas 2009).

In this study, we present a new numerical approach for multiphase reactive flows in
porous media at the pore scale, where the pore geometry can be arbitrarily complex.
We use the numerical model to investigate (i) the effect of the reaction on non-wetting
fluid flow pathways (capillary channels), (ii) the importance of the injection rate of
the buoyant non-wetting fluid carrying the reactant, and (iii) the penetration depth of
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reactant advected beyond the diffusing reaction front. We compare our results with
scaling laws obtained for simple geometries in the limit of low reaction rates and
observe good agreement between the two. Our calculations show that (i) capillary
channels are not stable when the reaction rate is large (when the flow pathways are
evolving rapidly because of melting/dissolution), (ii) in the limit of small St , the
radial transport of reactant out of the capillary channel decays exponentially with the
depth of penetration in the porous medium, and (iii) the aspect ratio of isocontours
of reactant concentration in the non-wetting fluid channels scales like the local Péclet
number.

This study allows us to better understand the evolution of the spatial and
temporal distribution of each fluid phase and reactant in porous media during
dissolution/melting and using different injection rates of non-wetting fluid. However,
a significant amount of work is required to incorporate the small-scale physics
learned from realistic pore-scale calculation into field-scale models. We believe that
the challenges associated with the development of detailed pore-scale models and their
upscaling is a difficult but necessary step towards a better understanding of reactive
transport.
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