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1 Problem 1 - The Carbon cycle

(a) An interesting example of a biogeochemical cycle is the exchange of carbon dioxide between
the ocean surface water and the atmosphere, and between the atmosphere and the crust. Figure 1
shows a diagram for a simplified Carbon cycle box model, with 4 boxes. The two ocean boxes
represent all forms of dissolved carbon CO2, H2CO3, HCO−3 and CO−−2 . The other two boxes
represent all forms of carbon in the terrestrial system and atmosphere. The carbon inventory and
fluxes in figure 1 are in units of 1015 grams. Write a Matlab script CarbonC.m to follow the
evolution of the carbon content in each of the four reservoirs for 100 years. Calculate the lifetimw
of carbon for each reservoir at time t=0. Obtain the approximate analytical expressions for the
time evolution of each reservoir.

NOTE: The input files should be in the form of a matrix F, with all positive off-diagonal fluxes,
and a vector M0 containing the initial condition for each reservoir. CarbonC.m should build a
matrix K based on the inputs F and M0 (as indicated in class).

(b) We can observe the non-linear response of the carbon cycle to perturbations. Let us first assume
that the terrestrial system starts to increase its output to the atmosphere (e.g. increase in fossil fuel
combustion) from 103×1015 to 120×1015 g/yr. Repeat the calculations performed in (a) for 100
years. In a second time assume another perturbation: introduce a flux from the terrestrial to the
ocean-surface layer reservoir of 60×1015 g/yr, all other fluxes being identical to (a). Follow the
evolution of each reservoir for 100 yrs.

Turn in a copy of CarbonC.m and 12 plots (4 from (a), i.e. 1 per reservoir, and 8 from (b)). Use the
command subplot to include the plots for the 4 reservoirs in a single page (3 pages total). Include -
ONLY FOR (a) - the four lifetimes and the approximate analytical expressions for the time evolution
of each reservoir.

2 Problem 2 - Ca isotopes in sea sediments, erosion and weathering
rates

Stable (i.e. non-radioactive) isotopes, like 44Ca and 40Ca behave identically chemically, but their
different masses induces a possible fractionation between the two isotopes (as seen briefly in class).
The first major process involving isotopic fractionations is equilibrium fractionation, which is a quan-
tum mechanical effect associated with the mass-dependent bonding of atoms in a crystalline structure
(like in the calcite forming carbonate sediments). In this case, a common rule is that, under equilib-
rium conditions between sea water and sediments (calcite), the heavier isotope (44Ca) is preferentially
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Figure 1: Carbon box (4) model.

incorporated into the solid phase, yielding a heavy isotopic composition (larger fraction of 44Ca) in
the solid and a lighter composition in the fluid (relatively speaking more 40Ca). The precipitation
of calcite from seawater is an exception, the calcite incorporates more readily the light isotope and
leaves the seawater depleted and heavier isotopically. We introduce the delta notation (common in
geochemistry)

δCa =
(

Rs −Rref

Rref

)
1000, (1)

where R is the ratio (proportion) of heavy (44) to light (40) Ca, the subscripts s and ref refer respec-
tively to a sample (e.g. seawater, sediments...) and a reference standard. In that notation sediments
with light Ca composition have a negative δCa. We will assume that the difference in isotopic com-
position between the seawater and sediments, defined as ∆sed, is fixed with a value of -1.3 (generally
consistent with biogenic calcite precipitation)

∆sed = δsed − δsea = −1.3, (2)

where δsed and δsea are the isotopic compositions of the sediments and the seawater respectively.

(a) The calcium ocean cycle can be idealized with a single box with incoming fluxes from weathering
and sub-oceanic volcanic sources. We will merge these two contributions into a general weather-
ing flux Fw. Similarly we can construct a single sink (flux out) associated with the precipitation
of calcite from the seawater Fp. Write a set of two coupled differential equations to describe the
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evolution of δsea and δsed assuming that the weathering flux Fw carries Ca with a fixed (not time
dependent) isotopic composition δw. Write down a third equation to describe the evolution the
total amount of Ca dissolved in the seawater NCa.

(b) Assume that NCa(t0) = 1.4 × 1019 grams, that δsea(t0) = δsed(t0) = 0 and that δw = −0.44.
Is the seawater-sediment system at equilibrium isotopically at t = t0? Write two function files
Flux_weathering.m and Flux_p.m that accept a single input variable (time) and send back the
respective flux at that time. Assume that Fp = NCa(t0)/10 and Fw = 0.7 × Fp. Write a Matlab
script runCa.m that solves for the coupled set of ODE written in (a) using a Forward-Euler
marching scheme. The script should ask you for the run time (tend − t0 in millions of years)
and number of timesteps (N ). Using the equations you wrote under (a), estimate the time it takes
for the system to reach a steady-state, compare it to a calculation (runtime 100 Ma with 100
timesteps). How do they compare ? Make a single plot for both time series δsed(t) and δsea(t) use
labels and legends.

(c) Repeat the same calculations, this time with Fp(t) = NCa(t)/10 and Fw(t) = NCa(t0)/10.
Make a single plot with both time-series. If you find a steady-state, how different are δsea and δsed

at steady-state ? How long does it take to reach the steady-state this time ? Explain the difference
if any.

Turn in a copy of Flux_weathering.m and Flux_p.m as well as the script to run the coupled ODE and
plot the results. Include the system of equations and the analytical estimates for steady state (question
(b)) with the calculated time to reach steady-state for the two cases (b-c).

3 Problem 3 - Marching equation, the road to Chaos

This problem is often referred to as the logistic map. A very simple non-linear marching equation
can yield some very interesting features. One of which is period doubling, i.e. the solution oscillates
between a number of exact solutions that increases (in general doubles at certain critical values) as a
free parameter of the function is increased. The equation we will solve for is

dx

dt
= Rx(1− x), (3)

where R is the phase parameter that controls the period doubling of the solution (see figure 2). This
phenomena is a famous example of a chaotique problem.

(a) Write a Matlab script logistic1.m that uses a Forward-Euler time marching scheme to solve the
logistic equation above for any choice of R. We will use x0 = 0.5 as an initial condition and run
the code for 10’000 iterations. Look up the Matlab functions unique, roundn and size on the on-
line help (type help xxx in the command window). You will use both of these functions to sort the
values of the array x. Once all the iterations are done and the results of the marching equation, the
array x, stored, (1) plot x vs iterations (over the last 1000 iterations only), (2) plot a histogram (see
command histo) of the same last 100 iterations using 1000 bins - use the subplot command to use
only one page for both plots, (3) discuss what the command size(unique(roundn(x(9000:10000),-
3))) does ?

(b) Use the script and the new command to write a second script logistic2.m that performs a loop
over different values of R from R = 2.9 to 3.6 with 1000 equally-spaced values of R (hint: use
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the command linspace). For each R values, solve the logistic equation identically as in (a) and
plot the number of different solutions you find as function of R. If we define the distance between
each bifurcation as

di = Ri −Ri−1, (4)

where the subscript i is related to the number of solutions of the logistic equation which is equal
2i, and Ri is defined to be the value of R at which new bifurcations are found (new doubling of
the number of solutions). Measure approximately (from the data you generated) d8, d4 and d2.
Compute the two ratios d4/d8 and d2/d4, what value did you find ? This number is often called
the Feigenbaum constant.

Turn in all the plots, values and discussions requested for Problem 3.

Figure 2: Bifurcation map for the logistic equation.
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